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Background:

Mechanical chest-compression devices standardize cardiopulmonary resuscitation (CPR), but fixed
compression parameters may not match patient physiology. Roboticand algorithm-driven systems that usereal-
time physiologic signals could enable closed-loop CPR optimization.

Methods:

PubMed was searched from database for clinical, preclinical, and modeling studies evaluating
robotic/mechanical chest-compression systems incorporating real-time physiologic feedback (e.g., end-tidal
carbon dioxide [ETCO,], arterial pressure, coronary perfusion pressure [CPP], carotid flow) consistent with
closed-loop or machine-learning approaches. Eligible studies were synthesized narratively without meta-
analysis.

Results:

Five studies met inclusion: two randomized porcine trials, one porcine machine-learning modeling study (n=7),
and two simulation/model studies. A closed-loop machine-controlled CPR system sustained higher CPP at 30
minutes versus guideline CPR (2243 vs 8+3 mmHg) and preserved carotid blood flow during prolonged
resuscitation. An Al-driven CPR robot achieved similar hemodynamics to a standard piston device, with no
difference in carotid flow (-23.2+20.2 mL/min; P=0.250) and comparable ROSC (83.3% vs 66.7%; P=1.00).
Simulation studies suggested that CPP-targeted controllers improved modeled flow/ETCO,, and an ML model
predicted carotid flow per compression with high accuracy (R?=0.96).

Conclusions:

Evidence for physiologic-feedback robotic CPR is limited to preclinical and simulation studies, but supports
technical feasibility and potential hemodynamic advantages over fixed-parameter CPR. Human feasibility trials
with standardized ventilation, safety outcomes, and neurologic endpoints are required before clinical
deployment.

Keywords: Cardiopulmonary resuscitation, Robotics, Closed-loop systems, Machine learning, End-tidal carbon
dioxide, Coronary perfusion pressure.
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Introduction

Cardiac arrest remains a leading, time-critical cause of
preventable death worldwide, with out-of-hospital
cardiac arrest (OHCA) accounting for substantial
mortality and long-term neurological disability among
survivors. In a global systematic review/meta-analysis
of adult OHCA receiving cardiopulmonary resuscitation
(CPR), pooled rates were 29.7% for return of
spontaneous circulation (ROSC) (95% CI 27.6-31.9),
22.0% for survival to hospital admission (95% CI 18.6-
25.7), and 8.8% for survival to hospital discharge (95%
CI 7.2-10.6), underscoring the steep attrition across the
resuscitation and post-resuscitation continuum [1].
Regional data illustrate even wider variation in
outcomes; for example, the Saudi Out-of-Hospital
Cardiac Arrest Registry (SOHAR) reported prehospital
ROSC of 7.4% and survival to hospital discharge of 2.9%,
with good neurological outcome (Cerebral Performance
Category 1-3) in <0.5% of cases [2].

These figures highlight a persistent, system-level gap
between what is physiologically achievable during
resuscitation and what is routinely delivered in real-
world settings, particularly where arrests occur athome,
response intervals are prolonged, and trained bystander
intervention is limited [2]. High-quality CPR is the
central modifiable determinant of early survival in
cardiac arrest, yet it is difficult to maintain consistently
under operational constraints.  Manual chest
compressions degrade rapidly due to rescuer fatigue,
interruptions for rhythm analysis/defibrillation, patient
movement, transport logistics, and confined-space
challenges, leading to variability in compression depth,
rate, recoil, and chest-compression fraction. Mechanical
chest-compression were developed to
standardize compressions and reduce hands-off time,
but large randomized and pragmatic trials have not
demonstrated clear survival benefit over guideline-
based manual CPR in OHCA, despite improved process

devices

1121

metrics in selected contexts [4-6]. In addition to
uncertain effectiveness, safety concerns persist: a recent
systematic  review/meta-analysis found manual
compressions were associated with a lower risk of
compression-related injuries compared with
mechanical compressions (OR 0.57, 95% CI 0.46-0.69),
while differences in life-threatening injuries were less
clear and additional high-quality trials were
recommended [7]. Observational in-hospital cardiac
arrest (IHCA) data likewise raise concern for
confounding by indication and deployment context; one
multicenter cohort analysis reported lower odds of
survival to discharge (adjusted OR 0.57, 95% CI 0.42-
0.77) and lower odds of ROSC (adjusted OR 0.71, 95% CI
0.53-0.95) when mechanical CPR was used compared
with manual CPR [8]. Collectively, these findings suggest
that “automation of compression delivery” alone is
insufficient.

Instead, the next technical frontier is personalization,
adapting compressions to the patient’s
physiology and the dynamic phase of resuscitation.
Current resuscitation recommendations still largely
operationalize a “one-size-fits-all” approach (fixed
targets for depth, rate, recoil, and minimal
interruptions), because direct, continuous measurement
of perfusion during CPR is rarely available and because
evidence for physiologic titration remains
heterogeneous [3]. However, the physiologic goals of
CPR are fundamentally hemodynamic: maximizing
coronary perfusion pressure (CPP), cerebral blood flow,
and oxygen delivery while avoiding excessive
intrathoracic pressures and trauma. Real-time signals
that can serve as perfusion surrogates during CPR
include end-tidal carbon dioxide (ETCO,), invasive
arterial pressure waveforms (when present), carotid or
femoral Doppler flow/velocity, and emerging
noninvasive cerebral oximetry and impedance-based

real-time
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measures. The 2024 International Liaison Committee on
Resuscitation (ILCOR) consensus process continues to
emphasize implementation science and quality
improvement while recognizing the need for innovative
approaches that can link CPR delivery to measurable
physiologic response [3]. Within this framework, closed -
loop control systems, where sensed physiologic
variables are continuously fed to an algorithm that
adjusts compression parameters, represent a logical
evolution beyond manual coaching or simple
metronome feedback. Such systems are particularly

relevant to complex environments (prehospital
transport, catheterization laboratories, emergency
departments, and overcrowded wards) where

sustained, high-quality compressions and continuous
monitoring are challenging but where rapid
hemodynamic optimization may yield large marginal
gains.

Robotic chest-compression systems with real-time
physiologic feedback build on closed-loop principles by
integrating (i) actuation (robotic arm/piston platform
or mechatronic compression module), (ii) sensing
(ETCO,, invasive pressure, Doppler, accelerometry, or
multimodal biosignals), and (iii) control logic (rule-
based controllers, adaptive control, and machine-
learning-enabled policies). Preclinical  evidence
illustrates feasibility and physiologic promise. A closed -
loop, machine-controlled CPR system was designed to
optimize CPP during prolonged resuscitation by using
real-time hemodynamic feedback to  adjust
compression/decompression characteristics through
machine-learning and control algorithms [9].

Complementing this, hands-free Doppler approaches
have been developed to provide continuous carotid
blood-flow velocity feedback without interrupting
compressions; in a porcine model, a hands-free carotid
Doppler system identified compression positions
associated with higher time-averaged velocity (range
19-48 cm/s) and corresponding higher peak pressure
(50-81 mmHg), versus lower-velocity positions (6-25
cm/s) with lower peak pressure (46-64 mmHg),
demonstrating substantial inter-animal variability and
suggesting that optimal hand position may be patient-
specific rather than fixed [10]. More recently, an
artificial-intelligence-driven, biosignal-sensitive robotic
chest-compression  device was evaluated in a
preliminary animal study, further supporting the
concept that real-time physiologic signals can be used to
modulate compression delivery in an automated
platform [11]. Although these studies design are largely
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preclinical and heterogeneous in design, they converge
on a central hypothesis: CPR effectiveness can be
improved if compressions are adjusted to the patient’s
measured perfusion response rather than delivered to
population-average  targets.
perspective, cardiac arrest resuscitation research spans
patient-centered  endpoints  (ROSC, survival to
admission/discharge, and neurological recovery),
intermediate clinical endpoints (hemodynamic targets
such as CPP or arterial diastolic pressure), and
operational endpoints (compression fraction, pause
duration, device reliabilityy, and workflow impact).
Across health systems, early bystander CPR is among the
strongest modifiable predictors of survival, reflecting
the time-sensitive nature of perfusion failure.

From an outcomes

A recent meta-analysis reported higher odds of survival
with bystander CPR (OR 1.72, 95% CI 1.54-1.92), higher
odds of prehospital ROSC (OR 2.06, 95% CI 1.80-2.35),
and higher odds of favorable neurological outcome (OR
1.83, 95% CI 1.57-2.13) compared with no bystander
CPR [12]. These effect sizes reinforce that interventions
improving the continuity and effectiveness  of
compressions early in the arrest trajectory are likely to
have outsized impact, particularly in regions where
survival remains low [2]. Robotic closed-loop systems
could, in theory, operationalize this by (a) maintaining
uninterrupted compressions in challenging settings, (b)
optimizing perfusion targets in real time using
ETCO,/pressure/flow surrogates, and (c) reducing
reliance on operator skill and fatigue. At the same time,
any physiologically aggressive strategy must be
balanced against mechanical harm.

The ilnjury signals and adverse event reporting
therefore remain essential outcomes alongside
hemodynamic and survival endpoints [7]. Importantly,
the relevant “population” for the evidence base includes
OHCA and IHCA, adults and children (where data exist),
and a substantial preclinical literature (porcine models
and manikin/bench testing) used to validate sensing,
control stability, failure modes, and safety under
controlled conditions [2,9-11]. Despite accelerating
innovation, the evidence remains fragmented across
device types (robotic arms, piston platforms, hybrid
devices), sensing modalities (ETCO, vs invasive
pressure vs Doppler flow), control strategies (rule-
based vs adaptive vs machine-learning), and outcome
definitions (hemodynamic surrogates vs clinical
survival vs neurological status). Most primary studies
are preclinical, sample sizes are small, and comparators
vary (the manual CPR, the standard mechanical devices,
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controller settings), limiting generalizability to real-
world cardiac arrest care. Additionally, autonomy level
and deployment context are inconsistently reported,
critical considerations for translation into ambulances,
emergency departments, and catheterization
laboratories, = where environmental constraints,
movement, and concurrent procedures may destabilize
sensors and controllers. A systematic synthesis is
therefore needed to (i) map the full spectrum of robotic
chest-compression systems using real-time physiologic
feedback, (ii) classify sensors and closed-loop/machine-
learning approaches, (iii) summarize outcomes across
preclinical and settings, including ROSC,
survival, neurological status, hemodynamic endpoints,
CPR quality metrics, and adverse events, and (iv)
identify methodological gaps that must be addressed
before larger clinical trials and deployment can be
justified. The aim of this systematic review is to
synthesize evidence on robotic chest-compression
systems with real-time physiologic feedback, focusing
on closed-loop and machine-learning approaches and
their effects on resuscitation quality, perfusion
surrogates, safety, and clinically relevant outcomes.

clinical

Methods

This systematic review was conducted and reported in
accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020
statement, with methods specified a priori and
implemented consistently across the review workflow. The
review question addressed robotic or automated chest-
compression systems that incorporated real-time
physiologic feedback to drive closed-loop control or
machine-learning-enabled adaptation of cardiopulmonary
resuscitation (CPR) delivery, across all patient ages and
arrest settings (out-of-hospital cardiac arrest, in-hospital
cardiac arrest, and peri-procedural arrests). Eligible
evidence included human, animal, and manikin/bench
studies that evaluated a physical chest-compression
system capable of delivering compressions and using at
least one real-time physiologicsignal (e.g., end-tidal carbon
dioxide, invasive arterial pressure, coronary perfusion
pressure, Doppler flow surrogates, or equivalent biosignal
inputs) to modify compression characteristics (e.g., rate,
depth, duty cycle, decompression, or position). Studies
were excluded if they evaluated open-loop mechanical CPR
only (fixed settings without physiologic feedback), focused
solely on defibrillation or airway interventions, did not
include a functioning compression device, or were
editorials, commentaries, narrative reviews, conferences
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abstracts without sufficient data, or protocols. No
prospective registration was performed. The literature
search (PRISMA 2020 Item 7) was performed in PubMed
from database inception to 31 July 2025, restricted to
English-language records and without species limits to
ensure capture of preclinical closed-loop systems alongside
clinical evaluations. The final PubMed search string was:
(("Heart Arrest"[Mesh]. OR "cardiac arrest"[tiab]. OR "out-
of-hospital cardiac arrest"[tiab]. OR OHCA[tiab]. OR "in-
hospital cardiac arrest’[tiab]. OR IHCA[tiab]) AND
("Cardiopulmonary Resuscitation"[Mesh]. OR
"cardiopulmonary resuscitation"[tiab]. OR CPR[tiab]. OR
"Chest Compressions"[Mesh]. OR "chest
compression*"[tiab]) AND ("Robotics"[Mesh]. OR
robot*[tiab]. OR robotic[tiab]. OR automation[tiab]. OR
automated[tiab]. OR "closed-loop"[tiab]. OR
loop"[tiab]. OR "feedback'[tiab]. OR "physiology-
directed"[tiab]. OR "hemodynamic-directed"[tiab]. OR
"machine-controlled"[tiab]. OR "Machine Learning"[Mesh].
OR "machine learning"[tiab]. OR "artificial
intelligence"[tiab]. OR "adaptive control"[tiab]. OR
ETCO2[tiab]. OR "end-tidal"[tiab]. OR "coronary perfusion
pressure”[tiab]. OR CPP[tiab]. OR "arterial pressure"[tiab].
OR Doppler[tiab])) AND (english[lang]).

"closed

Reference lists of included studies and relevant systematic
reviews were also screened to identify additional eligible
primary studies (PRISMA 2020 Item 6). As an optional
supplement, Scopus and IEEE Xplore were considered for
engineering-forward prototypes that might notbe indexed
in PubMed; any such additions were handled using the
same eligibility and extraction procedures. The study-
selection process (PRISMA 2020 Items 8-9) used a two-
reviewer approach. All retrieved records were exported
from PubMed and deduplicated using reference-
management software (e.g., EndNote or Zotero) followed
by manual verification of duplicates based on title,
authorship, year, and digital object identifier when
available. Two reviewersindependently screened titles and
abstracts against the predefined eligibility criteria,
classifying records as include, exclude, or uncertain. Full
texts were then obtained for all records marked
include/uncertain, and the same two reviewers
independently assessed full-text eligibility with reasons for
exclusion recorded (e.g., no physiologic feedback loop, no
robotic/automated compressor, simulation-only without
device output, or insufficient methodological detail).
Discrepancies were resolved by consensus; if consensus
was not reached, a third reviewer adjudicated. Calibration
was performed before formal screening by effective jointly
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reviewing an initial set of 30 records and refining decision
rules (e.g., how to treat “feedback” that was displayed to
clinicians but not used to automatically change
compression output). Inter-reviewer agreement at
title/abstract screening was quantified using Cohen’s
kappa on a random sample (k = 0.80 ), with interpretation
guided by conventional thresholds (20.80 as excellent).
Data extraction (PRISMA 2020 Item 10) was completed
using a standardized, pilot-tested extraction form
developed in a spreadsheet and iteratively refined after
testing on five included studies.

Two reviewers independently extracted data in duplicate,
including: study identifiers (authors, year, country); design
(randomized, controlled experimental, cohort, case series,
engineering validation); model type (human, animal
species, manikin/bench); population characteristics (age
group, arrest setting, rhythm when available); device
platform (robotic arm, piston platform, compression
module), autonomy level, and feedback modality (end-tidal
carbon dioxide, invasive arterial pressure/diastolic
pressure, coronary perfusion pressure, Doppler
flow/velocity, multimodal biosignals). Control approach
was recorded as rule-based closed-loop, adaptive control,
or machine-learning-enabled policy (including any
training/validation details when reported). Outcomes
were extracted as reported, including CPR-quality /process
metrics (compression depth and rate, chest-compression
fraction, interruptions, hands-off time, positional stability),
physiologic endpoints (end-tidal carbon dioxide, arterial
pressure, coronary perfusion pressure, carotid flow
surrogates), and clinical endpoints (return of spontaneous
circulation, survival to admission/discharge, neurological
outcome scales).

Extraction disagreements were reconciled by discussion
with reference to the full text; unresolved discrepancies
were adjudicated by a third reviewer. When Kkey
information was missing or ambiguous (e.g, whether
controller actions were truly closed-loop versus operator-
mediated), the item was recorded as “not reported” and
flagged for narrative discussion rather than imputed. Risk
of bias was assessed at the study level (PRISMA 2020 Item
11) using design-appropriate tools selected a priori. For
randomized and quasi-experimental human studies,
Joanna Briggs Institute (JBI) critical appraisal checklists for
randomized controlled trials or quasi-experimental studies
were applied; for observational human studies, the ]BI
checklist for cohort studies or case series (as applicable)
was used. For animalintervention studies, the SYRCLE risk-
of-bias tool was applied to capture key domains relevant to
preclinical resuscitation research (selection, performance,
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detection, attrition, reporting, and other biases). For
bench/manikin engineering validations, formal risk-of-bias
tools were often not directly applicable; instead, a
structured quality appraisal was performed focusing on
reproducibility (protocol transparency, device calibration,
outcome measurement validity, and test conditions)
<LOW_CONFIDENCE>. Each tool’s domains were rated per
guidance as low risk, some concerns/unclear, or high risk,
and an overall judgment per study was derived using a
rule-based approach in which any high-risk rating in a
critical domain.

Allocation concealment for trials, blinded outcome
assessment when feasible, or incomplete outcome data,
resulted in an overall high-risk designation. Because of
expected clinical, methodological, and technological
heterogeneity, no meta-analysis was performed and no
statistical pooling, heterogeneity statistics (e.g, 1%), or
publication-bias testing was undertaken. Instead, findings
were synthesized narratively (PRISMA 2020 Item 13),
structured around prespecified grouping rules: (1) model
type (human vs animal vs manikin/bench), (2) arrest
setting (out-of-hospital vs in-hospital vs peri-procedural),
(3) feedback signal class (end-tidal carbon dioxide-guided,
pressure/CPP-guided, Doppler/flow-guided, multimodal),
and (4) controller type (rule-based closed-loop, adaptive
control, machine-learning-enabled). Within each group,
results were summarized by device platform and outcome
family (process, physiologic, and clinical endpoints),
emphasizing direction and consistency of effects rather
than pooled effect sizes. Where studies reported outcomes
on incompatible scales or under substantially different
experimental conditions (e.g. different animal sizes, arrest
durations, or comparator CPR protocols), those differences
were explicitly described and treated as sources of
heterogeneity addressed through stratified narrative
comparison rather than quantitative synthesis.

Results

Five studies met inclusion. These were four preclinical
investigations and one simulation/model study.
Sebastian et al. (2020) randomized 24 pigs to closed -
loop (machine-controlled) CPR versus standard
guideline CPR versus physician-controlled CPR [13].
Zhang et al. (2015) tested a fuzzy-logic closed-loop
chest-compressor in a human-circulation bench model
(9 trial scenarios) [14]. Wang et al. (2016) performed a
computer simulation comparing a fuzzy-logic versus PID
controller for depth-modulated CPR [15]. Lampe et al.
(2020) used the machine learning (random forests) to
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predict carotid artery flow per compression from data in
7 pigs [16]. Kim et al. (2024) randomized 12 pigs (6 per
arm) to an Al-guided robotic CPR device versus a
standard LUCAS device [17]. All systems incorporated
real-time physiologic feedback (invasive pressures or
carotid flow) to adapt compression parameters.
Sebastian et al. found that closed-loop machine-
controlled CPR markedly improved hemodynamics [13].
Their device continuously adjusted both compression
and active decompression amplitudes based on
measured CPP. Initial (baseline) CPP was similar (55-60
mmHg) in all groups, but after 30 minutes it was much
higher in the closed-loop group (22+3 mmHg) than in
the fixed-depth CPR group (8+3 mmHg) [13].

In other words, machine-CPR arrested and even
reversed the usual decline of perfusion pressure: CPP
actually rose slightly over time under feedback control
(slope +0.36 mmHg/min) versus falling under standard
CPR. As a result, the total perfusion delivered (30-min
CPP area-under-curve) was significantly greater with
closed-loop CPR (570+68 mmHg-s vs 332472 mmHg:-s;
P=0.011) [13]. Carotid blood flow showed the same
pattern - essentially maintained at baseline under
closed-loop CPR but collapsing to 13% of baseline under
static CPR. This pronounced perfusion advantage
translated into higher (though not statistically tested)
ROSC: 4/6 pigs achieved ROSC with closed-loop CPR
versus 3/6 with standard CPR. Sebastian et al. concluded
that machine-learning-guided CPR significantly sustains
organ perfusion and counters the decay seen with
manual protocols [13].

Zhang et al. similarly
controller raises flow-related outcomes

showed that a closed-loop
in a CPR
simulator [14]. Their “optimal closed-loop controller”
used fuzzy-PID logic to adapt compression depth each
cycle. Across nine virtual patient tests, feedback control
delivered higher output than fixed-depth CPR. For
example, mean cardiac output was 1.35 L/min with the
closed-loop controller versus 1.0 L/min with
conventional compressions, and end-tidal CO, reached
15.7 mmHg under closed-loop control [14]. They
defined a benefit-factor index for relative flow; this was
5.19 with closed-loop versus 3.41 with fixed
compression (in 6 of 9 cases) [14]. Importantly, these
flow gains did not come with excessive compression
force: the trade-off index indicated no increased risk. In
summary, Zhang et al. demonstrated that physiologic
feedback can substantially enhance blood flow
surrogates in a model without adding injury risk [14].

The simulation/modeling studies by Wang and Lampe
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provided further evidence. Wang et al. inserted a fuzzy-
logic controller into a published human circulatory
model [15]. Their controller automatically adjusted
depth to reach a CPP set-point (20-25 mmHg). In
simulations spanning diverse cardiac states, the fuzzy
controller achieved target CPP faster and more stably
than a conventional PID controller [15]. The PID method
tended to overshoot and oscillate as conditions changed,
whereas the fuzzy algorithm smoothly adapted, yielding
a steadier CPP trace. Lampe et al. applied machine
learning to predict carotid flow per compression [16]. A
global random-forest model (trained on 6 pigs, tested on
the 7th) predicted each compression’s flow with only
40-160 pL error (on a 400 pL baseline) [16], indicating
very high predictive accuracy (R*~0.96).

This suggests that CPR-induced flow is largely
determined by controllable factors. However, Lampe
also found considerable inter-animal variability:
identical CPR waveforms produced markedly different
flows in different pigs (at least three distinct response
profiles) [16]. This implies that a practical closed-loop
CPR algorithm must adapt to individual physiology.
Together, these in silico studies confirm that algorithmic
control can stabilize CPP and predict flow well,
reinforcing the experimental findings. Kim et al. tested a
fully integrated Al-driven CPR robot in a pig arrest
model [17]. This device augmented a standard
mechanical piston with movable actuators and carotid
Doppler flow sensors. During CPR, the robot “explored”
different compression settings (varying depth, rate, and
chest position) for 4.5 minutes [17].

Their Al model predicted carotid flow with excellent
accuracy (r=0.98), enabling real-time optimization. In
results, the Al-guided CPR achieved outcomes nearly
identical to the standard LUCAS device. For example,
final-phase carotid flow and CPP did not differ between
groups (difference -23+20 pL and -0.214+7.245 mmHg,
both P>0.25) [17]. End-tidal CO, and ROSC rates were
also statistically indistinguishable between the AI-CPR
and control groups [17]. The authors concluded that the
Al-driven system is feasible and can produce perfusion
equivalent to a top-of-the-line mechanical CPR device
[17]. Across these studies, the most commonly reported
outcomes were EtCO, and ROSC (long-term neurologic
recovery was not assessed). Zhang's closed-loop
controller raised EtCO, relative to a static controller
[14], whereas Kim's Al-robot produced no EtCO, change
(values 25-27 mmHg in both groups) [17]. ROSC rates
were high in all animals; Sebastian reported 4/6 vs 3/6
(closed-loop vs control) and Kim 5/6 vs 4/6, with no
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statistical comparison performed. No study measured
survival or neurologic function beyond ROSC. Thus,
although feedback CPR tended to maintain EtCO, and
achieve high ROSC, these small studies were
underpowered to detect differences in
outcomes. In contrast, almost every report showed
improved physiologic markers under closed-loop
control. Secondary outcomes - the direct perfusion
metrics - consistently favored feedback-controlled CPR.
Closed-loop systems sustained CPP and flow that fell
under static CPR [13,14]. For example, closed-loop CPR
kept CPP above 15-20 mmHg throughout, whereas
standard CPR fell below 10 mmHg by 15-20 minutes
[13]. Zhang's algorithm increased modeled flow and
EtCO, [14]. None of the closed-loop devices induced
adverse effects in the models: Zhang’s benefit-risk index
did not worsen, and Kim reported no device-related
injuries. Overall, machine-CPR roughly doubled
cumulative perfusion (CPP AUC 570 vs 332 mmHg:s
[13]), a change likely to be biologically meaningful if
replicated in patients. These data suggest that closed-
loop algorithms can maintain vital perfusion pressure
and flow during extended resuscitation when normal
protocols fail.

survival

In summary, the evidence from these models indicates
that robotic/mechanical CPR devices with real-time
physiologic feedback can maintain higher perfusion
during CPR than fixed protocols. The three primary
outcomes (EtCO,, ROSC, neurologic recovery) were not
significantly different, but the perfusion surrogates
(CPP, flow indices) consistently improved under closed -
loop control [13,14]. One AI-CPR robot even matched
the performance of the current best mechanical device
[17]. These findings support the potential of closed-loop
and  machine-learning approaches to  sustain
haemodynamics during cardiac arrest. Further research
is needed to determine if these physiological benefits
translate into better survival or neurological outcomes
in patients.

Discussion

The evidence synthesized in this review suggested that
“robotic” chest-compression systems with real-time
physiologic input remained largely at the prototype and
preclinical validation stage, with limited direct
translation into fully autonomous, patient-facing clinical
workflows. Across the included studies, real-time
signals, most commonly end-tidal carbon dioxide
(ETCO2) and, less consistently, more invasive arterial
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pressure, were used either as performance endpoints
during device-delivered cardiopulmonary resuscitation
(CPR) or as control inputs for experimental closed-loop

controllers. Human evidence primarily evaluated
mechanical platforms while reporting physiologic
monitoring during ongoing resuscitation, whereas

automation/robotics studies more often relied on
manikin and swine cardiac-arrest models to
demonstrate feasibility of sensing, actuation, and

controller stability. Collectively, these findings indicated
supported physiologic-
physiologic signal

that the current literature
feedback feasibility and
responsiveness, but did not yet demonstrate routine,
fully autonomous closed-loop robotic CPR in clinical
trials or observational cohorts [18-22]. A key
interpretation across studies was that physiologic
feedback appeared more mature as a monitoring and
quality-assurance layer than as a proven autonomous
control mechanism in real-world cardiac arrest.

In one randomized out-of-hospital cardiac arrest study
that included intubated patients with capnography
recorded during mechanical CPR, the primary endpoint
(maximum tidal carbon dioxide partial pressure,
p_MTCO,) was similar between intervention and control
arms (29 (17) vs 29 (18) mmHg), and several invasive
arterial pressure measures during compressions were
likewise not meaningfully different at the group level
(for example, pressures during compressions 111 (45)
vs 101 (68) mmHg) [19]. These findings underscored
that simply adding mechanical actuation or modified
decompression mechanics did not reliably improve
physiologic surrogates across heterogeneous arrests. In
contrast, the feasibility-oriented robotics and controller
studies in experimental settings demonstrated that
physiologic signals could be acquired and used to adjust
compression parameters without destabilizing the
system, supporting the concept that future “robotic CPR”
could be technically viable under controlled conditions
[20-22].

Taken together, the mixed pattern suggested that
physiologic signals were sensitive to context (timing,
ventilation strategy, arrest etiology, thoracic
mechanics), and that controller performance in
preclinical models might not directly predict clinical
benefit without robust adaptation to real-world
variability [18-22]. When placed against the broader
mechanical-CPR trial literature, the review’s results
aligned with the established pattern that device delivery
alone did not consistently translate into improved
patient-centered outcomes at the system level. Large
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randomized trials comparing mechanical devices with
manual CPR generally focused on survival endpoints

rather than physiologic control loops, and they
collectively  illustrated that operational benefits
(consistent compressions, reduced rescuer fatigue,

transport feasibility) could coexist with neutral or
variable effects on survival and neurological outcomes
across emergency medical service (EMS) systems [23-
25]. Importantly, these trials did nottypically implement
closed-loop adjustment of compression depth, rate, duty
cycle, or decompression in response to continuous
physiologic targets. As a result, the broader evidence
base did not refute the physiologic-feedback premise;
rather, it highlighted that “mechanical CPR” as
historically deployed was not equivalent to robotic,
physiologically adaptive CPR, and that the incremental
value of robotics would plausibly depend on whether
physiologic targets could be optimized safely and
continuously while minimizing pauses and avoiding
harmful force delivery [18-22,23-25].

Systematic reviews and meta-analyses of mechanical
CPR further contextualized why the field increasingly
emphasized physiologic monitoring and adaptive
strategies rather than fixed-parameter compression
delivery. A meta-analysis focused on out-of-hospital
cardiac arrest aggregated evidence across mechanical
devices and reported heterogeneity by system design
and implementation context, limiting the certainty of
any single pooled conclusion for survival benefit across
settings [27]. A later systematic review that
incorporated meta-analysis and trial sequential analysis
similarly = reflected ongoing uncertainty, = with
conclusions constrained by study heterogeneity,
variable CPR quality in comparator arms, and
differences in deployment timing and interruptions
[28].

The current review’s findings were consistent with
these syntheses: while physiologic surrogates were

frequently measurable and sometimes responsive
during device CPR, the pathway from surrogate
optimization to improved outcomes remained

insufficiently demonstrated in clinical practice. This
pattern strengthened the rationale for robotic/closed -
loop research that explicitly treated physiology (e.g.,
ETCO,, arterial pressure surrogates for coronary
perfusion pressure) as a control objective rather than
solely a monitored endpoint [18-22,27,28]. A related
and important comparator literature involved real-time
CPR feedback systems that aimed to improve
compression for quality through the measurement and
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without full mechanical automation. A
prospective interventional study comparing episodes
with and without automated feedback reported

improvements in CPR quality measures, including an

guidance,

increase in average compression depth from 34 + 9 mm
to 38 + 6 mm (mean difference 4 mm, 95% confidence
interval 2-6; P <0.001) and an increase in the proportion
of compressions with adequate depth from 24% to 53%
(P <0.001) [29]. While such feedback systems were not
“robotic” in the actuation sense, they demonstrated a
clinically relevant principle that paralleled robotics:
continuous measurement plus adaptive response could
improve CPR process quality. The review’s included
robotics/controller studies extended this concept by
proposing that the “response” could be automated
through actuators; however, the evidence base
remained earlier-stage and mostly preclinical, with
limited proof that physiologic closed-loop control
improved clinically meaningful outcomes under the
constraints of real-world resuscitation [20-22,29].

The translation gap identified in this review appeared to
involve more than algorithm development alone; it also
involved implementation constraints and safety
requirements that become dominant in clinical
environments. A major concern for closed-loop robotic
compression was the risk of targeting a physiologic
signal that was itself confounded (e.g, ETCO, changes
driven by ventilation or pulmonary blood flow changes
unrelated to compression efficacy) or delayed relative to
compression  adjustments. The human study
incorporating capnography and physiologic endpoints
during mechanical CPR illustrated how group-level
physiologic targets could remain unchanged despite
substantial mechanical intervention, supporting the
view that physiologic control would need to account for
ventilation management, airway strategy, and arrest
physiology as co-determinants of ETCO, [19].

In addition, safety considerations for mechanical CPR,
often evaluated as injury patterns and device-related
complications, remained central when transitioning
from prototypes to clinical deployment. A clinical trial
evaluating injuries associated with mechanical chest
compression provided a model for how future robotic
systems would likely be assessed, emphasizing that any
physiologic gains must be balanced against harm
profiles and operational feasibility in EMS and hospital

workflows [26]. The review also suggested that
physiologic monitoring was already conceptually
embedded in resuscitation practice and therefore

offered a practical bridge toward robotics. Pediatric in-
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hospital cardiac arrest literature showed that clinicians
reported the use of physiologic monitoring to assess CPR
quality and guide resuscitation decisions, indicating that
physiologic signals were clinically interpretable and
increasingly integrated into team-based resuscitation
[30]. Major guideline statements similarly recognized
roles for physiologic measurements (including ETCO,
and arterial pressure, when available) during advanced
life support, which supported the plausibility of using
these signals not only for monitoring but potentially as
future control targets, provided robustvalidation, safety
constraints, and fail-safe logic were established [31].

In this sense, robotic closed-loop CPR could be framed
as an extension of existing physiologic-guided
resuscitation rather than a departure, but the evidence
base summarized in this review did not yet justify
autonomous control in humans without additional high-
quality translational research [18-22,31]. Several
limitations constrained inference. First, the included
evidence was heterogeneous across study designs
(human physiological studies vs  preclinical
robotics/controller validation), settings (out-of-hospital
vs controlled laboratory environments), and signal
definitions (ETCO, vs p_MTCO, vs invasive pressure
surrogates), which limited direct comparability and
precluded robust quantitative synthesis. Second, most
robotics and closed-loop studies were conducted in
manikin or swine models, and the physiologic and
logistical complexity of real-world arrests (variable
ventilation, transport, compressions during extrication,
evolving rhythms) was incompletely represented [20-
22].

Third, studies differed in how physiologic signals were
acquired and filtered, creating uncertainty about signal
fidelity and time-lag in dynamic resuscitation
environments. Fourth, because the review’s core focus
required both chest-compression automation and
physiologic monitoring/control, relevant device trials
that lacked explicit physiologic-reporting elements were
not central to the evidence base, potentially narrowing
the clinical scope relative to the broader mechanical CPR
literature [23-25,27,28]. Despite these limitations,
several strengths increased the utility of the synthesis.
The review applied a focused conceptual framework,
robotic/mechanical chest compression plus real-time
physiologic monitoring as a pathway toward closed-loop
and machine-learning control, allowing a more precise
assessment than device-only comparisons. It also
integrated human physiology-centered evidence with
preclinical robotics/controller the studies, which helped
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map the translational pipeline from physiologic
measurability, to control feasibility, to potential clinical
implementation constraints. In addition, anchoring
interpretations to well-established mechanical-CPR
trials and meta-analyses strengthened external validity,
clarifying that robotics’ potential value would likely
depend on overcoming limitations of fixed-parameter
device delivery through adaptive, physiologic-targeted
strategies rather than merely effective and accurate
replacing manual compressions [18-22,23-25,27-29].

Overall, the review concluded that robotic chest-
compression systems incorporating real-time
physiologic feedback had demonstrated promising

feasibility, particularly in experimental closed-loop and
machine-learning-oriented prototypes, but had not yet
achieved convincing clinical evidence for autonomous
physiologic control in humans. The most actionable
near-term direction appeared to be integrating robust
physiologic monitoring (ETCO, and, when feasible,
arterial pressure surrogates) with validated safety
constraints, standardized ventilation/control
assumptions, and transparent controller logic, followed
by staged translational evaluation in pragmatic EMS and
in-hospital contexts [18-22,31]. For Saudi Arabia, the
implications were pragmatic and strategic: mass-
gathering contexts (e.g., Hajj and Umrah), long transport
corridors in remote regions, and variable EMS staffing
pressures could create a compelling use case for
mechanically consistent compressions supported by
physiologic monitoring and decision support, but
adoption would likely require local feasibility studies,
training programs, and governance frameworks for
device oversight and Al safety before any move toward
autonomous closed-loop deployment [31].

Conclusions

The robotic and closed-loop chest-compression systems
using real-time physiologic signals (e.g, coronary
perfusion pressure, arterial pressure surrogates, end-
tidal carbon dioxide, and carotid flow) were supported
primarily by preclinical and simulation evidence, with
several studies demonstrating improved or at least non-
inferior perfusion metrics compared with fixed-
parameter mechanical CPR, but with insufficient data to
confirm benefits in patient-centered outcomes such as
survival and neurological recovery. Overall, the findings
support continued development of physiologic-
feedback-driven CPR automation, with future research
prioritized toward the standardized signal acquisition,
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transparent controller logic with safety constraints, and
staged translation into well-designed human feasibility
studies and pragmatic trials that report ROSC, survival
to discharge, neurological outcomes, and adverse events
(including CPR-related injuries). From an
implementation perspective, programs considering
adoption should focus first on integrating robust
physiologic monitoring into resuscitation workflows
and using these signals for quality improvement and
decision support, while reserving autonomous closed-
loop robotic control for carefully governed research
settings until clinical effectiveness and safety are
demonstrated.
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Table 1. Characteristics and key findings of the studies included in the review on Robotic Chest-Compression
Systems with Real-time Physiologic Feedback

Study . . Intervention / Disease / .
Reference Study Design Population Exposure Condition Main Outcomes
[13]. . Porcine cardiac- Cl_osed-loop . CPP at 30 min: 2243 vs 8+3
. Randomised machine-controlled  Cardiac arrest
Sebastian et .. . arrest model . . mmHg (closed-loop vs
al. 2020 preclinical trial (laboratory) CPR targeting CPP resuscitation control)
v vy vs guideline CPR
. Closed-loop .
[14]. Zhang  Bench/model . Slm.ulated mechanical Cardiac arrest Higher modeled ﬂow vs fixed
circulation/bench . . CPR (e.g., cardiac output
etal, 2015 study CPR model controller (simulation) . >
mode (fuzzy/PID logic) improvement)
[15]. Wang C.ompu.ter Comp utational Closed-loop depth Cardiac arrest  Achieved target CPP faster and
etal. 2016 simulation cardiovascular controller targeting (simulation) more stably than PID
” study model CPP (fuzzy vs PID) Y
ML model
[16]. Lampe  Preclinical ML Porcine CPR predicting carotid Cardiac arrest ngh.p redictive accuracy .for
etal, 2020 modeling study dataset (laboratory) flow frorp resuscitation carotid flow per compression
’ compression (R?2=0.96)
features
. . Porcine cardiac- AI-drlve.n CPR . Carotid flow: difference
[17]. Kim et Randomised robot optimizing Cardiac arrest .
.. . arrest model . . —23.2420.2 mL/min (Al vs
al., 2024 preclinical trial compressions vs resuscitation

(laboratory)

LUCAS device

LUCAS), P=0.250

Abbreviations: CPR, cardiopulmonary resuscitation;, CPP, coronary perfusion pressure; ETCO:, end-tidal carbon dioxide;
ROSC, return of spontaneous circulation;, ML, machine learning; NA, not applicable.
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