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Background:  

Mechanical chest-compression devices standardize cardiopulmonary resuscitation (CPR), but fixed 

compression parameters may not match patient physiology. Robotic and algorithm-driven systems that use real-

time physiologic signals could enable closed-loop CPR optimization. 

Methods:  

PubMed was searched from database for clinical, preclinical, and modeling studies evaluating 

robotic/mechanical chest-compression systems incorporating real-time physiologic feedback (e.g., end-tidal 

carbon dioxide [ETCO₂], arterial pressure, coronary perfusion pressure [CPP], carotid flow) consistent with 

closed-loop or machine-learning approaches. Eligible studies were synthesized narratively without meta-

analysis. 

Results:  

Five studies met inclusion: two randomized porcine trials, one porcine machine-learning modeling study (n=7), 

and two simulation/model studies. A closed-loop machine-controlled CPR system sustained higher CPP at 30 

minutes versus guideline CPR (22±3 vs 8±3 mmHg) and preserved carotid blood flow during prolonged 

resuscitation. An AI-driven CPR robot achieved similar hemodynamics to a standard piston device, with no 

difference in carotid flow (−23.2±20.2 mL/min; P=0.250) and comparable ROSC (83.3% vs 66.7%; P=1.00). 

Simulation studies suggested that CPP-targeted controllers improved modeled flow/ETCO₂, and an ML model 

predicted carotid flow per compression with high accuracy (R²=0.96). 

Conclusions:  

Evidence for physiologic-feedback robotic CPR is limited to preclinical and simulation studies, but supports 

technical feasibility and potential hemodynamic advantages over fixed-parameter CPR. Human feasibility trials 

with standardized ventilation, safety outcomes, and neurologic endpoints are required before clinical 

deployment. 

Keywords: Cardiopulmonary resuscitation, Robotics, Closed-loop systems, Machine learning, End-tidal carbon 

dioxide, Coronary perfusion pressure. 
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Introduction 
 
Cardiac arrest remains a leading, time-critical cause of 

preventable death worldwide, with out-of-hospital 

cardiac arrest (OHCA) accounting for substantial 

mortality and long-term neurological disability among 

survivors. In a global systematic review/meta-analys is 

of adult OHCA receiving cardiopulmonary resuscitation 

(CPR), pooled rates were 29.7% for return of 

spontaneous circulation (ROSC) (95% CI 27.6-31.9), 

22.0% for survival to hospital admission (95% CI 18.6 -

25.7), and 8.8% for survival to hospital discharge (95% 

CI 7.2-10.6), underscoring the steep attrition across the 

resuscitation and post-resuscitation continuum [1]. 

Regional data illustrate even wider variation in 

outcomes; for example, the Saudi Out-of-Hospital 

Cardiac Arrest Registry (SOHAR) reported prehospital 

ROSC of 7.4% and survival to hospital discharge of 2.9%, 

with good neurological outcome (Cerebral Performance 

Category 1-3) in <0.5% of cases [2].  

 

These figures highlight a persistent, system-level gap 

between what is physiologically achievable during 

resuscitation and what is routinely delivered in real-

world settings, particularly where arrests occur at home, 

response intervals are prolonged, and trained bystander 

intervention is limited [2]. High-quality CPR is the 

central modifiable determinant of early survival in 

cardiac arrest, yet it is difficult to maintain consistently 

under operational constraints. Manual chest 

compressions degrade rapidly due to rescuer fatigue, 

interruptions for rhythm analysis/defibrillation, patient 

movement, transport logistics, and confined-space 

challenges, leading to variability in compression depth, 

rate, recoil, and chest-compression fraction. Mechanical 

chest-compression devices were developed to 

standardize compressions and reduce hands-off time, 

but large randomized and pragmatic trials have not 

demonstrated clear survival benefit over guideline -

based  manual  CPR in  OHCA, despite improved process  

 

 

metrics in selected contexts [4-6]. In addition to 

uncertain effectiveness, safety concerns persist: a recent 

systematic review/meta-analysis found manual 

compressions were associated with a lower risk of 

compression-related injuries compared with 

mechanical compressions (OR 0.57, 95% CI 0.46-0.69), 

while differences in life-threatening injuries were less 

clear and additional high-quality trials were 

recommended [7]. Observational in-hospital cardiac 

arrest (IHCA) data likewise raise concern for 

confounding by indication and deployment context; one 

multicenter cohort analysis reported lower odds of 

survival to discharge (adjusted OR 0.57, 95% CI 0.42 -

0.77) and lower odds of ROSC (adjusted OR 0.71, 95% CI 

0.53-0.95) when mechanical CPR was used compared 

with manual CPR [8]. Collectively, these findings suggest 

that “automation of compression delivery” alone is 

insufficient.  

 

Instead, the next technical frontier is personalization , 

adapting compressions to the patient’s real-time 

physiology and the dynamic phase of resuscitation.  

Current resuscitation recommendations still largely 

operationalize a “one-size-fits-all” approach (fixed 

targets for depth, rate, recoil, and minimal 

interruptions), because direct, continuous measurement 

of perfusion during CPR is rarely available and because 

evidence for physiologic titration remains 

heterogeneous [3]. However, the physiologic goals of 

CPR are fundamentally hemodynamic: maximizing 

coronary perfusion pressure (CPP), cerebral blood flow, 

and oxygen delivery while avoiding excessive 

intrathoracic pressures and trauma. Real-time signals 

that can serve as perfusion surrogates during CPR 

include end-tidal carbon dioxide (ETCO₂), invasive 

arterial pressure waveforms (when present), carotid or 

femoral Doppler flow/velocity, and emerging 

noninvasive  cerebral  oximetry   and   impedance-based 
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measures. The 2024 International Liaison Committee on 

Resuscitation (ILCOR) consensus process continues to 

emphasize implementation science and quality 

improvement while recognizing the need for innovative 

approaches that can link CPR delivery to measurable 

physiologic response [3]. Within this framework, closed -

loop control systems, where sensed physiologic 

variables are continuously fed to an algorithm that 

adjusts compression parameters, represent a logical 

evolution beyond manual coaching or simple 

metronome feedback. Such systems are particularly 

relevant to complex environments (prehospital 

transport, catheterization laboratories, emergency 

departments, and overcrowded wards) where 

sustained, high-quality compressions and continuous 

monitoring are challenging but where rapid 

hemodynamic optimization may yield large marginal 

gains. 

 

Robotic chest-compression systems with real-time 

physiologic feedback build on closed-loop principles by 

integrating (i) actuation (robotic arm/piston platform 

or mechatronic compression module), (ii) sensing 

(ETCO₂, invasive pressure, Doppler, accelerometry, or 

multimodal biosignals), and (iii) control logic (rule -

based controllers, adaptive control, and machine -

learning-enabled policies). Preclinical evidence 

illustrates feasibility and physiologic promise. A closed -

loop, machine-controlled CPR system was designed to 

optimize CPP during prolonged resuscitation by using 

real-time hemodynamic feedback to adjust 

compression/decompression characteristics through 

machine-learning and control algorithms [9].  

 

Complementing this, hands-free Doppler approaches 

have been developed to provide continuous carotid 

blood-flow velocity feedback without interrupting 

compressions; in a porcine model, a hands-free carotid 

Doppler system identified compression positions 

associated with higher time-averaged velocity (range 

19-48 cm/s) and corresponding higher peak pressure 

(50-81 mmHg), versus lower-velocity positions (6-25 

cm/s) with lower peak pressure (46-64 mmHg), 

demonstrating substantial inter-animal variability and 

suggesting that optimal hand position may be patient-

specific rather than fixed [10]. More recently, an 

artificial-intelligence-driven, biosignal-sensitive robotic 

chest-compression device was evaluated in a 

preliminary animal study, further supporting the 

concept that real-time physiologic signals can be used to 

modulate compression delivery in an automated 

platform [11]. Although these  studies  design are  largely  

 

 

 

preclinical and heterogeneous in design, they converge 

on a central hypothesis: CPR effectiveness can be 

improved if compressions are adjusted to the patient’s 

measured perfusion response rather than delivered to 

population-average targets. From an outcomes 

perspective, cardiac arrest resuscitation research spans 

patient-centered endpoints (ROSC, survival to 

admission/discharge, and neurological recovery), 

intermediate clinical endpoints (hemodynamic targets 

such as CPP or arterial diastolic pressure), and 

operational endpoints (compression fraction, pause 

duration, device reliability, and workflow impact). 

Across health systems, early bystander CPR is among the 

strongest modifiable predictors of survival, reflecting 

the time-sensitive nature of perfusion failure.  

 

A recent meta-analysis reported higher odds of survival 

with bystander CPR (OR 1.72, 95% CI 1.54-1.92), higher 

odds of prehospital ROSC (OR 2.06, 95% CI 1.80-2.35), 

and higher odds of favorable neurological outcome (OR 

1.83, 95% CI 1.57-2.13) compared with no bystander 

CPR [12]. These effect sizes reinforce that interventions 

improving the continuity and effectiveness of 

compressions early in the arrest trajectory are likely to 

have outsized impact, particularly in regions where 

survival remains low [2]. Robotic closed-loop systems 

could, in theory, operationalize this by (a) maintaining 

uninterrupted compressions in challenging settings, (b) 

optimizing perfusion targets in real time using 

ETCO₂/pressure/flow surrogates, and (c) reducing 

reliance on operator skill and fatigue. At the same time, 

any physiologically aggressive strategy must be 

balanced against mechanical harm.  

 

The iInjury signals and adverse event reporting 

therefore remain essential outcomes alongside 

hemodynamic and survival endpoints [7]. Importantly, 

the relevant “population” for the evidence base includes 

OHCA and IHCA, adults and children (where data exist), 

and a substantial preclinical literature (porcine models 

and manikin/bench testing) used to validate sensing, 

control stability, failure modes, and safety under 

controlled conditions [2,9-11]. Despite accelerating 

innovation, the evidence remains fragmented across 

device types (robotic arms, piston platforms, hybrid 

devices), sensing modalities (ETCO₂ vs invasive 

pressure vs Doppler flow), control strategies (rule -

based vs adaptive vs machine-learning), and outcome 

definitions (hemodynamic surrogates vs clinical 

survival vs neurological status). Most primary studies 

are preclinical, sample sizes are small, and comparators 

vary (the manual CPR, the standard mechanical devices,  
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controller settings), limiting generalizability to real-

world cardiac arrest care. Additionally, autonomy level 

and deployment context are inconsistently reported , 

critical considerations for translation into ambulances, 

emergency departments, and catheterization 

laboratories, where environmental constraints, 

movement, and concurrent procedures may destabilize 

sensors and controllers. A systematic synthesis is 

therefore needed to (i) map the full spectrum of robotic 

chest-compression systems using real-time physiologic 

feedback, (ii) classify sensors and closed-loop/machine-

learning approaches, (iii) summarize outcomes across 

preclinical and clinical settings, including ROSC, 

survival, neurological status, hemodynamic endpoints, 

CPR quality metrics, and adverse events, and (iv) 

identify methodological gaps that must be addressed 

before larger clinical trials and deployment can be 

justified. The aim of this systematic review is to 

synthesize evidence on robotic chest-compression 

systems with real-time physiologic feedback, focusing 

on closed-loop and machine-learning approaches and 

their effects on resuscitation quality, perfusion 

surrogates, safety, and clinically relevant outcomes. 

 

 

Methods 

 

This systematic review was conducted and reported in 

accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 2020 

statement, with methods specified a priori and 

implemented consistently across the review workflow. The 

review question addressed robotic or automated chest-

compression systems that incorporated real-time 

physiologic feedback to drive closed-loop control or 

machine-learning-enabled adaptation of cardiopulmonary 

resuscitation (CPR) delivery, across all patient ages and 

arrest settings (out-of-hospital cardiac arrest, in-hospital 

cardiac arrest, and peri-procedural arrests). Eligible 

evidence included human, animal, and manikin/bench 

studies that evaluated a physical chest-compression 

system capable of delivering compressions and using at 

least one real-time physiologic signal (e.g., end-tidal carbon 

dioxide, invasive arterial pressure, coronary perfusion 

pressure, Doppler flow surrogates, or equivalent biosignal 

inputs) to modify compression characteristics (e.g., rate, 

depth, duty cycle, decompression, or position). Studies 

were excluded if they evaluated open-loop mechanical CPR 

only (fixed settings without physiologic feedback), focused 

solely on defibrillation or airway interventions, did not 

include a functioning compression device, or were 

editorials,  commentaries, narrative  reviews,  conferences  

 

 

 

abstracts without sufficient data, or protocols. No 

prospective registration was performed. The literature 

search (PRISMA 2020 Item 7) was performed in PubMed 

from database inception to 31 July 2025, restricted to 

English-language records and without species limits to 

ensure capture of preclinical closed-loop systems alongside 

clinical evaluations. The final PubMed search string was: 

(("Heart Arrest"[Mesh]. OR "cardiac arrest"[tiab]. OR "out-

of-hospital cardiac arrest"[tiab]. OR OHCA[tiab]. OR "in-

hospital cardiac arrest"[tiab]. OR IHCA[tiab]) AND 

("Cardiopulmonary Resuscitation"[Mesh]. OR 

"cardiopulmonary resuscitation"[tiab]. OR CPR[tiab]. OR 

"Chest Compressions"[Mesh]. OR "chest 

compression*"[tiab]) AND ("Robotics"[Mesh]. OR 

robot*[tiab]. OR robotic[tiab]. OR automation[tiab]. OR 

automated[tiab]. OR "closed-loop"[tiab]. OR "closed 

loop"[tiab]. OR "feedback"[tiab]. OR "physiology-

directed"[tiab]. OR "hemodynamic-directed"[tiab]. OR 

"machine-controlled"[tiab]. OR "Machine Learning"[Mesh]. 

OR "machine learning"[tiab]. OR "artificial 

intelligence"[tiab]. OR "adaptive control"[tiab]. OR 

ETCO2[tiab]. OR "end-tidal"[tiab]. OR "coronary perfusion 

pressure"[tiab]. OR CPP[tiab]. OR "arterial pressure"[tiab]. 

OR Doppler[tiab])) AND (english[lang]). 

 

 

 

Reference lists of included studies and relevant systematic 

reviews were also screened to identify additional eligible 

primary studies (PRISMA 2020 Item 6). As an optional 

supplement, Scopus and IEEE Xplore were considered for 

engineering-forward prototypes that might not be indexed 

in PubMed; any such additions were handled using the 

same eligibility and extraction procedures. The study-

selection process (PRISMA 2020 Items 8-9) used a two-

reviewer approach. All retrieved records were exported 

from PubMed and deduplicated using reference-

management software (e.g., EndNote or Zotero) followed 

by manual verification of duplicates based on title, 

authorship, year, and digital object identifier when 

available. Two reviewers independently screened titles and 

abstracts against the predefined eligibility criteria, 

classifying records as include, exclude, or uncertain. Full 

texts were then obtained for all records marked 

include/uncertain, and the same two reviewers 

independently assessed full-text eligibility with reasons for 

exclusion recorded (e.g., no physiologic feedback loop, no 

robotic/automated compressor, simulation-only without 

device output, or insufficient methodological detail). 

Discrepancies were resolved by consensus; if consensus 

was not reached, a third reviewer adjudicated. Calibration 

was performed before formal screening by effective jointly 
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reviewing an initial set of 30 records and refining decision 

rules (e.g., how to treat “feedback” that was displayed to 

clinicians but not used to automatically change 

compression output). Inter-reviewer agreement at 

title/abstract screening was quantified using Cohen’s 

kappa on a random sample (κ = 0.80 ), with interpretation 

guided by conventional thresholds (≥0.80 as excellent). 

Data extraction (PRISMA 2020 Item 10) was completed 

using a standardized, pilot-tested extraction form 

developed in a spreadsheet and iteratively refined after 

testing on five included studies.  

 

Two reviewers independently extracted data in duplicate, 

including: study identifiers (authors, year, country); design 

(randomized, controlled experimental, cohort, case series, 

engineering validation); model type (human, animal 

species, manikin/bench); population characteristics (age 

group, arrest setting, rhythm when available); device 

platform (robotic arm, piston platform, compression 

module), autonomy level, and feedback modality (end-tidal 

carbon dioxide, invasive arterial pressure/diastolic 

pressure, coronary perfusion pressure, Doppler 

flow/velocity, multimodal biosignals). Control approach 

was recorded as rule-based closed-loop, adaptive control, 

or machine-learning-enabled policy (including any 

training/validation details when reported). Outcomes 

were extracted as reported, including CPR-quality/process 

metrics (compression depth and rate, chest-compression 

fraction, interruptions, hands-off time, positional stability), 

physiologic endpoints (end-tidal carbon dioxide, arterial 

pressure, coronary perfusion pressure, carotid flow 

surrogates), and clinical endpoints (return of spontaneous 

circulation, survival to admission/discharge, neurological 

outcome scales).  

 

Extraction disagreements were reconciled by discussion 

with reference to the full text; unresolved discrepancies 

were adjudicated by a third reviewer. When key 

information was missing or ambiguous (e.g., whether 

controller actions were truly closed-loop versus operator-

mediated), the item was recorded as “not reported” and 

flagged for narrative discussion rather than imputed. Risk 

of bias was assessed at the study level (PRISMA 2020 Item 

11) using design-appropriate tools selected a priori. For 

randomized and quasi-experimental human studies, 

Joanna Briggs Institute (JBI) critical appraisal checklists for 

randomized controlled trials or quasi-experimental studies 

were applied; for observational human studies, the JBI 

checklist for cohort studies or case series (as applicable) 

was used. For animal intervention studies, the SYRCLE risk-

of-bias tool was applied to capture key domains relevant to 

preclinical resuscitation research (selection, performance,  

 

 

 

detection, attrition, reporting, and other biases). For 

bench/manikin engineering validations, formal risk-of-bias 

tools were often not directly applicable; instead, a 

structured quality appraisal was performed focusing on 

reproducibility (protocol transparency, device calibration, 

outcome measurement validity, and test conditions) 

<LOW_CONFIDENCE>. Each tool’s domains were rated per 

guidance as low risk, some concerns/unclear, or high risk, 

and an overall judgment per study was derived using a 

rule-based approach in which any high-risk rating in a 

critical domain. 

 

Allocation concealment for trials, blinded outcome 

assessment when feasible, or incomplete outcome data, 

resulted in an overall high-risk designation. Because of 

expected clinical, methodological, and technological 

heterogeneity, no meta-analysis was performed and no 

statistical pooling, heterogeneity statistics (e.g., I²), or 

publication-bias testing was undertaken. Instead, findings 

were synthesized narratively (PRISMA 2020 Item 13), 

structured around prespecified grouping rules: (1) model 

type (human vs animal vs manikin/bench), (2) arrest 

setting (out-of-hospital vs in-hospital vs peri-procedural), 

(3) feedback signal class (end-tidal carbon dioxide-guided, 

pressure/CPP-guided, Doppler/flow-guided, multimodal), 

and (4) controller type (rule-based closed-loop, adaptive 

control, machine-learning-enabled). Within each group, 

results were summarized by device platform and outcome 

family (process, physiologic, and clinical endpoints), 

emphasizing direction and consistency of effects rather 

than pooled effect sizes. Where studies reported outcomes 

on incompatible scales or under substantially different 

experimental conditions (e.g., different animal sizes, arrest 

durations, or comparator CPR protocols), those differences 

were explicitly described and treated as sources of 

heterogeneity addressed through stratified narrative 

comparison rather than quantitative synthesis.  

 

 

   Results 

 

Five studies met inclusion. These were four preclinical 

investigations and one simulation/model study. 

Sebastian et al. (2020) randomized 24 pigs to closed -

loop (machine-controlled) CPR versus standard 

guideline CPR versus physician-controlled CPR [13]. 

Zhang et al. (2015) tested a fuzzy‐logic closed-loop 

chest-compressor in a human-circulation bench model 

(9 trial scenarios) [14]. Wang et al. (2016) performed a 

computer simulation comparing a fuzzy-logic versus PID 

controller for depth-modulated CPR [15]. Lampe et al. 

(2020) used the  machine  learning  (random forests) to 
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predict carotid artery flow per compression from data in 

7 pigs [16]. Kim et al. (2024) randomized 12 pigs (6 per 

arm) to an AI-guided robotic CPR device versus a 

standard LUCAS device [17]. All systems incorporated 

real-time physiologic feedback (invasive pressures or 

carotid flow) to adapt compression parameters.  

Sebastian et al. found that closed-loop machine-

controlled CPR markedly improved hemodynamics [13]. 

Their device continuously adjusted both compression 

and active decompression amplitudes based on 

measured CPP. Initial (baseline) CPP was similar (55-60 

mmHg) in all groups, but after 30 minutes it was much 

higher in the closed-loop group (22±3 mmHg) than in 

the fixed-depth CPR group (8±3 mmHg) [13].  

 

In other words, machine-CPR arrested and even 

reversed the usual decline of perfusion pressure: CPP 

actually rose slightly over time under feedback control 

(slope +0.36 mmHg/min) versus falling under standard 

CPR. As a result, the total perfusion delivered (30-min 

CPP area-under-curve) was significantly greater with 

closed-loop CPR (570±68 mmHg·s vs 332±72 mmHg·s; 

P=0.011) [13]. Carotid blood flow showed the same 

pattern - essentially maintained at baseline under 

closed-loop CPR but collapsing to 13% of baseline under 

static CPR. This pronounced perfusion advantage 

translated into higher (though not statistically tested) 

ROSC: 4/6 pigs achieved ROSC with closed-loop CPR 

versus 3/6 with standard CPR. Sebastian et al. concluded 

that machine-learning-guided CPR significantly sustains 

organ perfusion and counters the decay seen with 

manual protocols [13]. 

 

Zhang et al. similarly showed that a closed-loop 

controller raises flow-related outcomes in a CPR 

simulator [14]. Their “optimal closed-loop controller” 

used fuzzy‐PID logic to adapt compression depth each 

cycle. Across nine virtual patient tests, feedback control 

delivered higher output than fixed-depth CPR. For 

example, mean cardiac output was 1.35 L/min with the 

closed-loop controller versus 1.0 L/min with 

conventional compressions, and end-tidal CO₂ reached 

15.7 mmHg under closed-loop control [14]. They 

defined a benefit-factor index for relative flow; this was 

5.19 with closed-loop versus 3.41 with fixed 

compression (in 6 of 9 cases) [14]. Importantly, these 

flow gains did not come with excessive compression 

force: the trade-off index indicated no increased risk. In 

summary, Zhang et al. demonstrated that physiologic 

feedback can substantially enhance blood flow 

surrogates in a model without adding injury risk [14]. 

The simulation/modeling studies by Wang and Lampe  

 

 

 

provided further evidence. Wang et al. inserted a fuzzy -

logic controller into a published human circulatory 

model [15]. Their controller automatically adjusted 

depth to reach a CPP set-point (20-25 mmHg). In 

simulations spanning diverse cardiac states, the fuzzy 

controller achieved target CPP faster and more stably 

than a conventional PID controller [15]. The PID method 

tended to overshoot and oscillate as conditions changed, 

whereas the fuzzy algorithm smoothly adapted, yielding 

a steadier CPP trace. Lampe et al. applied machine 

learning to predict carotid flow per compression [16]. A 

global random-forest model (trained on 6 pigs, tested on 

the 7th) predicted each compression’s flow with only 

40-160 μL error (on a 400 μL baseline) [16], indicating 

very high predictive accuracy (R²≈0.96).  

 

This suggests that CPR-induced flow is largely 

determined by controllable factors. However, Lampe 

also found considerable inter-animal variability: 

identical CPR waveforms produced markedly different 

flows in different pigs (at least three distinct response 

profiles) [16]. This implies that a practical closed-loop 

CPR algorithm must adapt to individual physiology. 

Together, these in silico studies confirm that algorithmic 

control can stabilize CPP and predict flow well, 

reinforcing the experimental findings. Kim et al. tested a 

fully integrated AI-driven CPR robot in a pig arrest 

model [17]. This device augmented a standard 

mechanical piston with movable actuators and carotid 

Doppler flow sensors. During CPR, the robot “explored” 

different compression settings (varying depth, rate, and 

chest position) for 4.5 minutes [17]. 

 

Their AI model predicted carotid flow with excellent 

accuracy (r=0.98), enabling real-time optimization. In 

results, the AI-guided CPR achieved outcomes nearly 

identical to the standard LUCAS device. For example, 

final-phase carotid flow and CPP did not differ between 

groups (difference −23±20 μL and −0.214±7.245 mmHg, 

both P>0.25) [17]. End-tidal CO₂ and ROSC rates were 

also statistically indistinguishable between the AI-CPR 

and control groups [17]. The authors concluded that the 

AI-driven system is feasible and can produce perfusion 

equivalent to a top-of-the-line mechanical CPR device  

[17]. Across these studies, the most commonly reported 

outcomes were EtCO₂ and ROSC (long-term neurologic 

recovery was not assessed). Zhang’s closed-loop 

controller raised EtCO₂ relative to a static controller  

[14], whereas Kim’s AI-robot produced no EtCO₂ change 

(values 25-27 mmHg in both groups) [17]. ROSC rates 

were high in all animals; Sebastian reported 4/6 vs 3/6 

(closed-loop  vs  control)  and  Kim  5/6 vs 4/6,  with no 
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statistical comparison performed. No study measured 

survival or neurologic function beyond ROSC. Thus, 

although feedback CPR tended to maintain EtCO₂ and 

achieve high ROSC, these small studies were 

underpowered to detect differences in survival 

outcomes. In contrast, almost every report showed 

improved physiologic markers under closed-loop 

control. Secondary outcomes - the direct perfusion 

metrics - consistently favored feedback-controlled CPR. 

Closed-loop systems sustained CPP and flow that fell 

under static CPR [13,14]. For example, closed-loop CPR 

kept CPP above 15-20 mmHg throughout, whereas 

standard CPR fell below 10 mmHg by 15-20 minutes 

[13]. Zhang’s algorithm increased modeled flow and 

EtCO₂ [14]. None of the closed-loop devices induced 

adverse effects in the models: Zhang’s benefit-risk index 

did not worsen, and Kim reported no device-related 

injuries. Overall, machine-CPR roughly doubled 

cumulative perfusion (CPP AUC 570 vs 332 mmHg·s  

[13]), a change likely to be biologically meaningful if 

replicated in patients. These data suggest that closed -

loop algorithms can maintain vital perfusion pressure 

and flow during extended resuscitation when normal 

protocols fail. 

 

In summary, the evidence from these models indicates 

that robotic/mechanical CPR devices with real-time 

physiologic feedback can maintain higher perfusion 

during CPR than fixed protocols. The three primary 

outcomes (EtCO₂, ROSC, neurologic recovery) were not 

significantly different, but the perfusion surrogates 

(CPP, flow indices) consistently improved under closed -

loop control [13,14]. One AI-CPR robot even matched 

the performance of the current best mechanical device  

[17]. These findings support the potential of closed-loop 

and machine-learning approaches to sustain 

haemodynamics during cardiac arrest. Further research 

is needed to determine if these physiological benefits 

translate into better survival or neurological outcomes 

in patients. 

 

 

Discussion 

 

The evidence synthesized in this review suggested that 

“robotic” chest-compression systems with real-time 

physiologic input remained largely at the prototype and 

preclinical validation stage, with limited direct 

translation into fully autonomous, patient-facing clinical 

workflows. Across the included studies, real-time 

signals, most commonly end-tidal carbon dioxide 

(ETCO₂)  and,  less  consistently,  more  invasive  arterial  

 

 

 

pressure, were used either as performance endpoints  

during device-delivered cardiopulmonary resuscitation 

(CPR) or as control inputs for experimental closed-loop 

controllers. Human evidence primarily evaluated 

mechanical platforms while reporting physiologic 

monitoring during ongoing resuscitation, whereas 

automation/robotics studies more often relied on 

manikin and swine cardiac-arrest models to 

demonstrate feasibility of sensing, actuation, and 

controller stability. Collectively, these findings indicated 

that the current literature supported physiologic -

feedback feasibility and physiologic signal 

responsiveness, but did not yet demonstrate routine, 

fully autonomous closed-loop robotic CPR in clinical 

trials or observational cohorts [18-22]. A key 

interpretation across studies was that physiologic 

feedback appeared more mature as a monitoring and 

quality-assurance layer than as a proven autonomous 

control mechanism in real-world cardiac arrest.  

 

In one randomized out-of-hospital cardiac arrest study 

that included intubated patients with capnography 

recorded during mechanical CPR, the primary endpoint 

(maximum tidal carbon dioxide partial pressure, 

p_MTCO₂) was similar between intervention and control 

arms (29 (17) vs 29 (18) mmHg), and several invasive 

arterial pressure measures during compressions were 

likewise not meaningfully different at the group level 

(for example, pressures during compressions 111 (45) 

vs 101 (68) mmHg) [19]. These findings underscored 

that simply adding mechanical actuation or modified 

decompression mechanics did not reliably improve 

physiologic surrogates across heterogeneous arrests. In 

contrast, the feasibility-oriented robotics and controller 

studies in experimental settings demonstrated that 

physiologic signals could be acquired and used to adjust 

compression parameters without destabilizing the 

system, supporting the concept that future “robotic CPR” 

could be technically viable under controlled conditions  

[20-22].  

 

Taken together, the mixed pattern suggested that 

physiologic signals were sensitive to context (timing, 

ventilation strategy, arrest etiology, thoracic 

mechanics), and that controller performance in 

preclinical models might not directly predict clinical 

benefit without robust adaptation to real-world 

variability [18-22]. When placed against the broader 

mechanical-CPR trial literature, the review’s results 

aligned with the established pattern that device delivery 

alone did not consistently translate into improved 

patient-centered  outcomes  at  the  system  level. Large 
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randomized trials comparing mechanical devices with 

manual CPR generally focused on survival endpoints 

rather than physiologic control loops, and they 

collectively illustrated that operational benefits 

(consistent compressions, reduced rescuer fatigue, 

transport feasibility) could coexist with neutral or 

variable effects on survival and neurological outcomes 

across emergency medical service (EMS) systems [23-

25]. Importantly, these trials did not typically implement 

closed-loop adjustment of compression depth, rate, duty 

cycle, or decompression in response to continuous 

physiologic targets. As a result, the broader evidence 

base did not refute the physiologic-feedback premise; 

rather, it highlighted that “mechanical CPR” as 

historically deployed was not equivalent to robotic, 

physiologically adaptive CPR, and that the incremental 

value of robotics would plausibly depend on whether 

physiologic targets could be optimized safely and 

continuously while minimizing pauses and avoiding 

harmful force delivery [18-22,23-25]. 

 

Systematic reviews and meta-analyses of mechanical 

CPR further contextualized why the field increasingly 

emphasized physiologic monitoring and adaptive 

strategies rather than fixed-parameter compression 

delivery. A meta-analysis focused on out-of-hospital 

cardiac arrest aggregated evidence across mechanical 

devices and reported heterogeneity by system design 

and implementation context, limiting the certainty of 

any single pooled conclusion for survival benefit across 

settings [27]. A later systematic review that 

incorporated meta-analysis and trial sequential analysis 

similarly reflected ongoing uncertainty, with 

conclusions constrained by study heterogeneity, 

variable CPR quality in comparator arms, and 

differences in deployment timing and interruptions 

[28].  

 

The current review’s findings were consistent with 

these syntheses: while physiologic surrogates were 

frequently measurable and sometimes responsive 

during device CPR, the pathway from surrogate 

optimization to improved outcomes remained 

insufficiently demonstrated in clinical practice. This 

pattern strengthened the rationale for robotic/closed -

loop research that explicitly treated physiology (e.g., 

ETCO₂, arterial pressure surrogates for coronary 

perfusion pressure) as a control objective rather than 

solely a monitored endpoint [18-22,27,28]. A related 

and important comparator literature involved real-time 

CPR feedback systems that aimed to improve 

compression for quality  through the  measurement and  

 

 

 

guidance, without full mechanical automation. A 

prospective interventional study comparing episodes 

with and without automated feedback reported 

improvements in CPR quality measures, including an 

increase in average compression depth from 34 ± 9 mm 

to 38 ± 6 mm (mean difference 4 mm, 95% confidence 

interval 2-6; P < 0.001) and an increase in the proportion 

of compressions with adequate depth from 24% to 53% 

(P < 0.001) [29]. While such feedback systems were not 

“robotic” in the actuation sense, they demonstrated a 

clinically relevant principle that paralleled robotics: 

continuous measurement plus adaptive response could 

improve CPR process quality. The review’s included 

robotics/controller studies extended this concept by 

proposing that the “response” could be automated 

through actuators; however, the evidence base 

remained earlier-stage and mostly preclinical, with 

limited proof that physiologic closed-loop control 

improved clinically meaningful outcomes under the 

constraints of real-world resuscitation [20-22,29]. 

 

The translation gap identified in this review appeared to 

involve more than algorithm development alone; it also 

involved implementation constraints and safety 

requirements that become dominant in clinical 

environments. A major concern for closed-loop robotic 

compression was the risk of targeting a physiologic 

signal that was itself confounded (e.g., ETCO₂ changes 

driven by ventilation or pulmonary blood flow changes 

unrelated to compression efficacy) or delayed relative to 

compression adjustments. The human study 

incorporating capnography and physiologic endpoints 

during mechanical CPR illustrated how group-level 

physiologic targets could remain unchanged despite 

substantial mechanical intervention, supporting the 

view that physiologic control would need to account for 

ventilation management, airway strategy, and arrest 

physiology as co-determinants of ETCO₂ [19]. 

 

In addition, safety considerations for mechanical CPR , 

often evaluated as injury patterns and device-related 

complications, remained central when transitioning 

from prototypes to clinical deployment. A clinical trial 

evaluating injuries associated with mechanical chest 

compression provided a model for how future robotic 

systems would likely be assessed, emphasizing that any 

physiologic gains must be balanced against harm 

profiles and operational feasibility in EMS and hospital 

workflows [26]. The review also suggested that 

physiologic monitoring was already conceptually 

embedded in resuscitation practice and therefore 

offered a practical  bridge  toward robotics. Pediatric in- 
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hospital cardiac arrest literature showed that clinicians 

reported the use of physiologic monitoring to assess CPR 

quality and guide resuscitation decisions, indicating that 

physiologic signals were clinically interpretable and 

increasingly integrated into team-based resuscitation 

[30]. Major guideline statements similarly recognized 

roles for physiologic measurements (including ETCO₂ 

and arterial pressure, when available) during advanced 

life support, which supported the plausibility of using 

these signals not only for monitoring but potentially as 

future control targets, provided robust validation, safety 

constraints, and fail-safe logic were established [31]. 

 

 In this sense, robotic closed-loop CPR could be framed 

as an extension of existing physiologic-guided 

resuscitation rather than a departure, but the evidence 

base summarized in this review did not yet justify 

autonomous control in humans without additional high-

quality translational research [18-22,31]. Several 

limitations constrained inference. First, the included 

evidence was heterogeneous across study designs 

(human physiological studies vs preclinical 

robotics/controller validation), settings (out-of-hospital 

vs controlled laboratory environments), and signal 

definitions (ETCO₂ vs p_MTCO₂ vs invasive pressure 

surrogates), which limited direct comparability and 

precluded robust quantitative synthesis. Second, most 

robotics and closed-loop studies were conducted in 

manikin or swine models, and the physiologic and 

logistical complexity of real-world arrests (variable 

ventilation, transport, compressions during extrication, 

evolving rhythms) was incompletely represented [20-

22]. 

 

Third, studies differed in how physiologic signals were 

acquired and filtered, creating uncertainty about signal 

fidelity and time-lag in dynamic resuscitation 

environments. Fourth, because the review’s core focus 

required both chest-compression automation and 

physiologic monitoring/control, relevant device trials 

that lacked explicit physiologic-reporting elements were 

not central to the evidence base, potentially narrowing 

the clinical scope relative to the broader mechanical CPR 

literature [23-25,27,28]. Despite these limitations, 

several strengths increased the utility of the synthesis. 

The review applied a focused conceptual framework, 

robotic/mechanical chest compression plus real-time 

physiologic monitoring as a pathway toward closed-loop 

and machine-learning control, allowing a more precise 

assessment than device-only comparisons. It also 

integrated human physiology-centered evidence with 

preclinical robotics/controller the studies, which helped  

 

 

 

map the translational pipeline from physiologic 

measurability, to control feasibility, to potential clinical 

implementation constraints. In addition, anchoring 

interpretations to well-established mechanical-CPR 

trials and meta-analyses strengthened external validity, 

clarifying that robotics’ potential value would likely 

depend on overcoming limitations of fixed-parameter 

device delivery through adaptive, physiologic-targeted 

strategies rather than merely effective and accurate 

replacing manual compressions [18-22,23-25,27-29]. 

 

 Overall, the review concluded that robotic chest-

compression systems incorporating real-time 

physiologic feedback had demonstrated promising 

feasibility, particularly in experimental closed-loop and 

machine-learning-oriented prototypes, but had not yet 

achieved convincing clinical evidence for autonomous 

physiologic control in humans. The most actionable 

near-term direction appeared to be integrating robust 

physiologic monitoring (ETCO₂ and, when feasible, 

arterial pressure surrogates) with validated safety 

constraints, standardized ventilation/con trol 

assumptions, and transparent controller logic, followed 

by staged translational evaluation in pragmatic EMS and 

in-hospital contexts [18-22,31]. For Saudi Arabia, the 

implications were pragmatic and strategic: mass -

gathering contexts (e.g., Hajj and Umrah), long transport 

corridors in remote regions, and variable EMS staffing 

pressures could create a compelling use case for 

mechanically consistent compressions supported by 

physiologic monitoring and decision support, but 

adoption would likely require local feasibility studies, 

training programs, and governance frameworks for 

device oversight and AI safety before any move toward 

autonomous closed-loop deployment [31]. 

 

 

Conclusions 

 

The robotic and closed-loop chest-compression systems 

using real-time physiologic signals (e.g., coronary 

perfusion pressure, arterial pressure surrogates, end-

tidal carbon dioxide, and carotid flow) were supported 

primarily by preclinical and simulation evidence, with 

several studies demonstrating improved or at least non-

inferior perfusion metrics compared with fixed -

parameter mechanical CPR, but with insufficient data to 

confirm benefits in patient-centered outcomes such as 

survival and neurological recovery. Overall, the findings 

support continued development of physiologic -

feedback-driven CPR automation, with future research 

prioritized  toward  the standardized  signal  acquisition, 
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transparent controller logic with safety constraints, and 

staged translation into well-designed human feasibility 

studies and pragmatic trials that report ROSC, survival 

to discharge, neurological outcomes, and adverse events 

(including CPR-related injuries). From an 

implementation perspective, programs considering 

adoption should focus first on integrating robust 

physiologic monitoring into resuscitation workflows 

and using these signals for quality improvement and 

decision support, while reserving autonomous closed-

loop robotic control for carefully governed research 

settings until clinical effectiveness and safety are 

demonstrated. 
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Table 1. Characteristics and key findings of the studies included in the review on Robotic Chest -Compression 

Systems with Real-time Physiologic Feedback 

Study 

Reference 
Study Design Population 

Intervention / 

Exposure 

Disease / 

Condition 
Main Outcomes 

[13]. 

Sebastian et 

al., 2020 

Randomised 
preclinical trial  

Porcine cardiac-
arrest model 
(laboratory) 

Closed-loop 

machine-controlled 
CPR targeting CPP 

vs guideline CPR 

Cardiac arrest 
resuscitation 

CPP at 30 min: 22±3 vs 8±3 
mmHg (closed-loop vs 

control) 

[14]. Zhang 

et al., 2015 

Bench/model 

study 

Simulated 
circulation/bench 

CPR model 

Closed-loop 

mechanical 

controller 
(fuzzy/PID logic) 

Cardiac arrest 

(simulation) 

Higher modeled flow vs fixed 
CPR (e.g., cardiac output 

improvement) > 

[15]. Wang 

et al., 2016 

Computer 

simulation 
study 

Computational 

cardiovascular 
model 

Closed-loop depth 

controller targeting 
CPP (fuzzy vs PID) 

Cardiac arrest 
(simulation) 

Achieved target CPP faster and 
more stably than PID  

[16]. Lampe 

et al., 2020 

Preclinical ML 
modeling study  

Porcine CPR 
dataset (laboratory) 

ML model 
predicting carotid 

flow from 
compression 

features 

Cardiac arrest 
resuscitation 

High predictive accuracy for 

carotid flow per compression 
(R² ≈ 0.96)  

[17]. Kim et 

al., 2024 

Randomised 
preclinical trial  

Porcine cardiac-
arrest model 

(laboratory) 

AI-driven CPR 
robot optimizing 
compressions vs 

LUCAS device 

Cardiac arrest 
resuscitation 

Carotid flow: difference 
−23.2±20.2 mL/min (AI vs 

LUCAS), P=0.250 

Abbreviations: CPR, cardiopulmonary resuscitation; CPP, coronary perfusion pressure; ETCO₂, end -tidal carbon dioxide; 

ROSC, return of spontaneous circulation; ML, machine learning; NA, not applicable.  
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