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Background:  

Medication errors are a major source of preventable harm in perioperative and inpatient care, and artificial 

intelligence (AI) is increasingly used to strengthen medication safety systems. 

Methods:  

PubMed was searched from inception to September 2025 for English-language human studies evaluating AI-

enabled medication safety interventions in hospital perioperative or inpatient settings. Two reviewers screened 

records, extracted data in duplicate, and appraised risk of bias using Joanna Briggs Institute checklists; results 

were synthesized narratively without meta-analysis. 

Results:  

Eleven studies, predominantly retrospective cohorts or pre–post implementations, were included across adult 

wards, intensive care, pediatric/neonatal intensive care, and intravenous administration monitoring, with 

sample sizes ranging from 311 ICU prescribing episodes to 3,481,634 alert events. Discrimination for identifying 

high-risk prescriptions or patients was moderate to high (AUROC 0.74–0.97). Improvements were reported in 

key process measures, including reduced pediatric ICU dosing deviations (RR 0.21; 95% CI 0.05–0.96), higher 

reconciliation discrepancy yield with admission prioritization (45% vs 21%; RR 2.13; 95% CI 1.40–3.24), and 

lower alert burden (54.1% reduction at sensitivity 0.99; precision 0.192); one deployment triggered alerts for 

0.4% of orders and 43% prompted order changes. 

Conclusions:  

AI-enabled medication safety systems were associated with improved identification and management of high-

risk medication scenarios and more efficient safety surveillance. Evidence remained heterogeneous, and 

preventable adverse drug events and longer-term patient outcomes were infrequently measured. 
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Introduction 
 
Medication errors can be conceptualized as preventable 

failures anywhere along the medication-use process 

(e.g., prescribing, order communication/transcription , 

dispensing, administration, and monitoring) that may 

lead to inappropriate medication use and/or patient 

harm. Across healthcare systems, observational meta -

analytic synthesis has estimated that preventable 

medication harm occurs in roughly 3% of patient-

incidence records (95% CI 2%–4%), while overall 

medication harm occurs in 9% (95% CI 7%–11%), with 

substantial heterogeneity across settings and study 

designs [1]. Importantly for the present protocol, the 

same meta-analysis observed higher rates of 

preventable medication harm in intensive care (7%, 

95% CI 4%–12%) and highly specialized or surgical care 

(6%, 95% CI 3%–11%) compared with many other 

clinical contexts, and it identified prescribing and 

monitoring as prominent sources of the highest 

prevalence rates of preventable harm [1].  

 

These findings motivate a systems-oriented lens: 

“medication safety systems” in modern hospitals 

increasingly rely on layered safeguards, workflow 

checks, standardization, and digital infrastructure, to 

reduce the probability that a single human lapse 

propagates into patient harm [1].  While medication 

errors are frequently described as ubiquitous but 

“mostly low harm” events, high-quality national 

modeling illustrates that even modest per-event harm 

probabilities translate into major aggregate burden. In 

England, an economic analysis estimated 237 million 

medication errors annually across the medication 

process, with 38.4% occurring in primary care; 72% had 

little or no potential for harm, yet approximately 66 

million were considered potentially clinically significant  

[2]. The same analysis estimated that definitely 

avoidable adverse drug events cost the National Health 

Service  £98,462,582  per  year,  consumed  181,626  bed 

 

 

days, and caused or contributed to 1,708 deaths 

(including both primary-care adverse drug events 

leading to admission and secondary-care events leading 

to longer hospital stay) [2]. These quantitative estimates 

support the rationale for prevention strategies that are 

not limited to “rare catastrophic” events, but instead 

strengthen system resilience against common, workflow-

driven failures that can scale into large societal impact  

[2].  Evidence synthesized specifically for high-acuity 

inpatient environments also reinforces that 

perioperative and critical-care care pathways have 

distinctive error mechanisms and measurement 

challenges. A systematic review focusing on operating 

rooms and intensive care units reported an operating 

theatre medication error rate range of 7.3%–12% and an 

intensive care unit medication error rate range of 1.32% –

31.7%, derived from studies published between 2017 

and 2023 [3].  

 

In Saudi Arabia, national database studies provide 

complementary process-stage insight at scale: a 

nationwide observational analysis of reports submitted 

to a Ministry of Health pharmaceutical-care database 

(March 2018–June 2019) identified 71,332 medication 

error events, with 84.8% occurring during prescribing, 

5.8% during transcribing, and 5.7% during dispensing; 

5.8% of reported errors reached the patient, and 

reporters associated 31.6% of errors with work overload 

and 22.7% with lack of experience [4]. More recent 

analysis of reported medication errors from January 

2023 to December 2024 across nine Ministry of Health 

hospitals evaluated 19,645 errors, reporting that 69.1% 

were intercepted before reaching patients, that 

prescribing constituted 94.8% of events, and that 

pharmacists reported more than 90% of cases [5]. 

Although individual drug-class analyses are not directly 

generalizable to all inpatient medications, national 

database work on clozapine-related  medication  caused 
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errors further illustrates that most reported events may 

not reach patients (92.3% did not reach the patient) and 

that harm is uncommon among those that do (reported 

harm 0.3% in this dataset), reinforcing both the value and 

the limitations of incident-reporting signals for estimating 

“true incidence.” [6].  Taken together, contemporary 

quantitative evidence indicates that medication error 

prevention is a high-yield patient safety target globally 

and within Saudi Arabia, but the burden manifests 

differently depending on denominators, detection 

methods, and care context. Globally, preventable 

medication harm prevalence estimates (3%, 95% CI 2%–

4%) and setting-specific peaks in intensive care and 

surgical/specialized care (e.g., intensive care 7%, 95% CI 

4%–12%; specialized/surgical care 6%, 95% CI 3%–11%) 

support prioritization of inpatient and perioperative 

pipelines where exposure to high-alert intravenous 

agents and rapid titration is common [1].  

 

In parallel, system-level modeling in England translates 

medication errors into concrete resource and mortality 

impacts (e.g., £98.5 million/year for definitely avoidable 

adverse drug events and 1,708 deaths/year in the 

modeled framework), making the case that even 

incremental prevention at population level can have 

meaningful downstream benefits [2]. Within Saudi 

Arabia, the sheer scale of reported errors (71,332 events 

in a 16-month national reporting window, with most 

originating at prescribing and <10% reaching the 

patient) suggests that prevention strategies should be 

designed both to reduce upstream error generation and 

to strengthen downstream interception reliability [4]. 

More recent multi-hospital analysis (19,645 reported 

errors across 2023–2024, with 69.1% intercepted 

before reaching the patient and prescribing 

representing 94.8%) highlights a contemporary pattern 

in which prescribing-stage vulnerability remains 

dominant, while interception is frequent but not 

universal [5].  

 

Specialized analyses of high-risk medications (e.g., 

clozapine) indicate similar stage concentration and high 

interception proportions, but also point to policy, 

process standardization, and reporting culture as 

recurring contributors that are actionable targets for 

informatics-enabled safeguards [6].  Perioperative 

medication safety has distinct human-factors stressors , 

time pressure, parallel tasking, rapid physiological 

consequences, and frequent use of look-alike/sound-

alike (LASA) preparations, that can place exceptional 

reliance on local workflow design and team experience. 

In  Saudi  Arabia, a cross-sectional  survey of  anesthesia  

 

 

 

clinicians reported that 69% had experienced an 

anesthetic drug error at least once in their career, with 

“haste” and “heavy workload” each reported by 60.3% 

as primary causal factors, and with less experience 

associated with more committed errors; respondents 

also indicated that fear of medicolegal issues was a 

major barrier to reporting [7]. Large retrospective 

perioperative data from Japan similarly emphasizes 

provider-level experience as a measurable risk factor: 

intraoperative medication errors occurred in 102 of 

100,093 procedures (0.10%), and compared with 

attending anesthesiologists, the adjusted odds of 

medication error were higher when care involved 

residents (odds ratio [OR]. 2.713, 95% CI 1.283–6.815) 

or interns (OR 3.272, 95% CI 1.508–8.368) [8]. 

Importantly, the target condition for this protocol , 

perioperative and inpatient medication errors, spans 

both “rare but high-severity” events that nonetheless 

generate downstream costs [2].  

 

From a prevention-technology standpoint, operating-

room clinical decision support is increasingly 

recognized as a credible intervention layer: in a 

retrospective cross-sectional review of self-reported 

intraoperative medication errors, 76 of 80 (95%) were 

classified as preventable by clinical decision support 

algorithms, with wrong-medication and wrong-dose 

errors among those most consistently rated 

preventable, while inadvertent bolus errors were least 

preventable by this approach [9]. These findings 

collectively support a hybrid prevention model in which 

technology is not treated as a substitute for expertise, 

but as an adaptive barrier that strengthens weak points 

in human memory, attention, and communication , 

especially during high workload and high stakes [2,7–9].  

However, current evidence indicates important 

translational gaps.  

 

A perioperative digital-health viewpoint highlights that 

AI-enabled decision support and health information 

technology tools (e.g., computerized provider order 

entry, electronic medication administration records, 

barcode medication administration) are plausible 

mechanisms to reduce perioperative medication errors, 

but it also emphasizes measurement and 

implementation challenges specific to the perioperative 

domain [10]. In the inpatient prescribing context, a 

scoping review of AI used to optimize medication alerts 

found only 10 quantitative studies; positive predictive 

value ranged from 9% to 100%, only 30% reported both 

statistical performance and clinical outcomes, only two 

studies implemented AI-based alerts in hospital current 
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practice, and none performed external validation [11]. A 

large retrospective study of an implemented machine 

learning–based clinical decision support system 

(MedGuard) reported 1,206,895 prescriptions with a 

2.36% alert rate (28,536 alerts), 48.88% alert 

acceptance, and identification of 470 intercepted errors 

(1.64% of alerts; 16.4 intercepted errors per 1,000 

alerted orders), suggesting a potentially favorable 

balance between alert volume and actionable yield, but 

generalizability remains uncertain [12]. Meta-analytic 

work on determinants of medication-related alert 

handling further indicates that acceptance behavior is 

systematically associated with contextual factors (e.g., 

fellows vs residents OR 1.14, 95% CI 1.09–1.20; 

weekday vs weekend OR 1.25, 95% CI 1.11–1.40), 

underscoring that “human-in-the-loop” behavior is not 

random noise but a measurable system component that 

AI optimization efforts must address [13].  

 

Beyond alerts, machine learning has been deployed to 

prioritize admission medication reconciliation: a 

predictive tool trained on 7,200 patients achieved an 

area under the receiver operating characteristic curve of 

0.74 and, in retrospective “real-life” simulation, 

identified 45% of selected patients as having at least one 

unintended discrepancy versus 21% using an existing 

tool (reported improvement 113%) [14]. Finally, 

natural language processing and machine learning 

applied to unstructured electronic health record text 

have shown promise for detecting under-reported 

adverse drug events and safety signals, but evidence 

remains limited and heterogeneous, with relatively few 

studies and variable evaluation methods [15]. 

Collectively, these findings suggest that the field is 

advancing, but still lacks consistent external validation, 

perioperative-specific evaluation, and clear linkage 

between AI-enabled medication safety systems and 

patient-important outcomes across inpatient and 

perioperative settings [10–16]. To systematically review 

and synthesize evidence on artificial intelligence –

enabled medication safety systems that prevent 

perioperative and inpatient medication errors, 

evaluating their designs, implementation contexts, 

effectiveness on error-related outcomes, and limitations 

in validation and generalizability.  

 

 

Methods 

 

This systematic review was conducted and reported in 

accordance with the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 2020  in 

 

 

 

statement, with methods specified a priori but without 

protocol registration (PRISMA-Item-24). The review 

question addressed whether artificial intelligence–enabled 

medication safety systems reduced or prevented 

medication errors in perioperative and inpatient hospital 

care. Eligible studies enrolled human participants receiving 

perioperative care (preoperative, intraoperative, or 

immediate postoperative phases) and/or inpatient care 

(medical/surgical wards, intensive care units, emergency 

department admissions leading to hospitalization) and 

evaluated an artificial intelligence (AI) component 

embedded in a medication-use process (prescribing, 

transcribing, dispensing, administration, monitoring) or in 

a medication safety platform (e.g., decision support, 

surveillance, smart infusion oversight).  

 

We included comparative and non-comparative primary 

research designs relevant to implementation in real-world 

clinical workflows (randomized trials, quasi-experimental 

studies, interrupted time series, cohort studies, cross-

sectional evaluations, and prospective/retrospective 

system validations performed in clinical settings). We 

excluded editorials, narrative reviews, purely simulated 

datasets without clinical deployment, conference abstracts 

lacking sufficient methods/results for appraisal, and 

studies focused exclusively on outpatient/community 

pharmacy settings. Primary outcomes were medication 

error occurrence, interception/detection rates, and 

preventable adverse drug events; secondary outcomes 

included alert performance metrics (e.g., sensitivity, 

specificity, positive predictive value), workflow impact, 

and user-acceptance measures. 

 

The primary database searched was PubMed, from 

inception to 30 September 2025 (PRISMA-Item-7). 

Searches were performed using a combination of Medical 

Subject Headings (MeSH) and free-text terms for (1) AI 

methods, (2) medication errors and safety, and (3) 

perioperative/inpatient hospital settings, with limits 

applied to English language and humans. The exact PubMed 

search string was: (("Artificial Intelligence"[Mesh]. OR 

"Machine Learning"[Mesh]. OR "Natural Language 

Processing"[Mesh]. OR "Clinical Decision Support 

Systems"[Mesh]. OR artificial intelligence[tiab]. OR 

machine learning[tiab]. OR deep learning[tiab]. OR neural 

network*[tiab]. OR natural language processing[tiab]. OR 

large language model*[tiab]. OR algorithm*[tiab]. OR 

predictive model*[tiab]) AND ("Medication Errors"[Mesh]. 

OR "Drug-Related Side Effects and Adverse 

Reactions"[Mesh]. OR medication error*[tiab]. OR 

prescribing error*[tiab]. OR administration error*[tiab]. 

OR dispensing error* [tiab]. OR adverse drug event* [tiab]. 
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OR medication safety[tiab]) AND ("Perioperative 

Care"[Mesh]. OR "Surgical Procedures, Operative"[Mesh]. 

OR anesthesia[tiab]. OR perioperative[tiab]. OR 

intraoperative[tiab]. OR postoperative[tiab]. OR 

"Inpatients"[Mesh]. OR inpatient*[tiab]. OR hospital*[tiab]. 

OR intensive care[tiab]. OR ICU[tiab]) AND ("Medication 

Systems, Hospital"[Mesh]. OR "Computerized Provider 

Order Entry"[Mesh]. OR "Barcode Technology"[Mesh]. OR 

smart pump*[tiab]. OR infusion pump*[tiab]. OR 

medication system*[tiab]. OR order entry[tiab]. OR e-

prescrib*[tiab]. OR surveillance[tiab]. OR monitoring 

system*[tiab])) AND (english[lang]) AND (humans[MeSH 

Terms]) AND ("1900/01/01"[Date - Publication]. : 

"2025/09/30"[Date-Publication]). Reference lists of 

included studies were also screened for additional eligible 

records (backward citation searching), and Scopus was 

searched as a secondary database using a conceptually 

aligned strategy. 

 

All records retrieved were exported from PubMed and 

imported into a reference manager for duplicate removal 

(PRISMA-Item-8). Duplicates were identified using 

automated matching (title, authors, year, journal) followed 

by manual confirmation for ambiguous cases. Two 

reviewers independently screened titles and abstracts 

against eligibility criteria using a structured screening 

form, after completing a calibration exercise on a pilot set 

of records to harmonize interpretation of 

inclusion/exclusion rules. Full texts were retrieved for 

potentially eligible records, and the same two reviewers 

independently assessed full-text eligibility, documenting 

exclusion reasons in a standardized log to support PRISMA 

flow reporting (PRISMA-Item-16). Discrepancies at either 

stage were resolved by discussion; if consensus could not 

be reached, a third reviewer adjudicated. Where full texts 

could not be retrieved through institutional access, authors 

were contacted. 

 

Data were extracted using a standardized electronic 

extraction form developed for AI-enabled medication 

safety interventions (PRISMA-Item-9). The form was 

piloted and refined before full extraction. Two reviewers 

performed double data extraction independently, 

capturing: study setting (country, hospital type, unit), 

population (age group, surgical vs medical admissions), 

clinical context (perioperative phase and/or inpatient 

service line), AI approach (rule-based vs machine learning 

vs deep learning vs natural language processing vs large 

language model–based methods), data inputs (electronic 

health record, computerized provider order entry logs, 

medication administration records, smart pump telemetry, 

pharmacy dispensing systems),  comparator  (usual care or  

 

 

 

non-AI clinical decision support), implementation 

characteristics (integration point, alerting logic, user 

workflow), and outcomes (medication error definitions, 

detection/interception rates, preventable adverse drug 

events, performance metrics, and process measures). 

When studies reported multiple timepoints or units, all 

eligible outcome measurements were extracted with 

corresponding denominators and time windows. Conflicts 

in extracted data were reconciled by consensus using the 

full-text source as the arbiter; persistent disagreements 

were resolved by a third reviewer. Where critical 

numerical details were missing (e.g., denominators for 

error rates), attempts were made to derive values from the 

report; if derivation was not possible, the item was 

recorded as not reported. Risk of bias was assessed at the 

individual study level using Joanna Briggs Institute (JBI) 

Critical Appraisal Checklists matched to study design. 

 

 Two reviewers independently appraised each study after a 

calibration exercise to standardize domain interpretation. 

Each checklist item was rated as “Yes,” “No,” “Unclear,” or 

“Not applicable,” and disagreements were resolved by 

discussion with third-reviewer adjudication if required. 

Overall risk-of-bias judgments were derived using a rule-

based approach: low risk when key domains for the 

relevant design were met with no critical failures, 

moderate risk when one or more key domains were rated 

“Unclear” without critical failures, and high risk when one 

or more critical domains were rated “No.” No study was 

excluded solely on the basis of risk-of-bias ratings; instead, 

these judgments informed the strength and caution of 

narrative conclusions. Because of expected clinical and 

methodological heterogeneity across AI approaches, 

implementation contexts, outcome definitions, and study 

designs, quantitative meta-analysis was not performed and 

no statistical heterogeneity metrics were calculated 

(PRISMA-Item-13).  

 

Findings were synthesized narratively using a structured 

framework that grouped studies by (1) care context 

(perioperative vs general inpatient vs intensive care), (2) 

medication-use process targeted (prescribing/order entry, 

pharmacy verification/dispensing, administration 

including smart infusion oversight, and 

monitoring/surveillance), and (3) AI method family 

(machine learning/deep learning predictive models, 

natural language processing for text-based signals, and 

hybrid systems combining rules with learned models). 

Within each subgroup, results were summarized by 

direction and consistency of effect on medication error 

reduction or interception, supported by extracted effect 

measures (rates, proportions, and diagnostic performance 



Medicina Katastrof 
 

 
1181 

 
 

 

 

 

 metrics) reported in the original studies. Where studies 

reported multiple endpoints, priority was given to 

clinically anchored outcomes (medication errors and 

preventable adverse drug events) over intermediate alert 

metrics, while still documenting alert performance to 

contextualize feasibility and burden. Variation across 

studies was handled qualitatively by explicitly describing 

differences in populations, clinical workflow integration, 

baseline safety infrastructure, and outcome measurement; 

when discrepant findings occurred, plausible explanatory 

factors (e.g., alert fatigue, data drift, implementation 

maturity, or differing error definitions) were explored 

without pooling estimates. Risk-of-bias ratings were used 

to temper inferences within each subgroup, and 

conclusions emphasized patterns supported by multiple 

low-to-moderate risk evaluations. 

 

 

   Results 

 

A PubMed search (inception–30 September 2025) 

identified 4,277 records, of which 1,003 duplicates were 

removed, leaving 3,274 unique records for title/abstract 

screening . After exclusion of 3,150 records at screening, 

124 full texts were assessed for eligibility and 113 were 

excluded for non-hospital settings, non-AI/non-

deployable interventions, simulation-only evaluations, 

or insufficient outcome reporting . Eleven studies met 

inclusion criteria and were included in the narrative 

synthesis, comprising inpatient ward, intensive care unit 

(ICU), pediatric ICU (PICU), neonatal ICU (NICU), and 

intravenous (IV) administration safety contexts. The 

included studies were predominantly observational 

cohorts, pre–post implementations, and retrospective 

validations embedded in clinical workflows, with no 

eligible randomized head-to-head trials comparing AI 

versus non-AI medication safety systems.  

 

Sample sizes and units of analysis varied substantially, 

spanning 311 ICU albumin prescription requests in a 

quasi-experimental pre–post design [17], 9,342 PICU 

prescriptions across two implementation phases [16], 

7,200 hospital admissions used for model development 

and simulated deployment [18], 5,017 admissions to 

inpatient wards with adjudicated adverse drug events 

(ADEs) [19], and 3,481,634 medication alerts analyzed 

for machine-learning–based filtering [14].  The evidence 

base was geographically diverse, including inpatient 

implementations and validations from Israel [12], 

France [13,18], the United States [14], Taiwan [15], the 

Netherlands (PICU) [16], Iran (ICU) [17], Japan (NICU) 

[20], and the Republic of Korea (IV infusion monitoring)  

 

 

 

[21], alongside unsupervised outlier-detection work 

applied to large-scale prescribing data [22].  Follow-up 

periods were typically defined by hospital 

implementation windows or retrospective extraction 

intervals, ranging from several months pre–post [16,17]. 

to multi-year retrospective cohorts [14,18,19]. Across 

studies, the most frequently reported clinically 

anchored outcome was prevention or interception of 

medication errors at the point of prescribing and/or 

pharmacist verification (primary outcome for this 

review), operationalized as (i) low-burden alerting with 

clinically validated relevance and downstream order 

modification, and/or (ii) reductions in measurable 

prescribing deviations requiring correction. In an 

inpatient internal medicine deployment of a 

probabilistic machine-learning clinical decision support 

system (CDSS), alerts were generated for 0.4% of all 

medication orders.  

 

With 85% judged clinically valid and 43% prompting 

changes in subsequent medical orders, indicating 

meaningful interception of high-risk prescribing 

situations with low alert burden [12].  In a PICU pre–post 

evaluation of a dosing decision-support system, 

unintentional protocol deviations requiring adjustment 

fell from 0.22% of prescriptions (11/5,034) before 

implementation to 0.05% (2/4,308) after 

implementation; unjustified deviations similarly 

declined from 0.56% to 0.23% [16].  In an ICU pre–post 

study evaluating a medication decision support system 

for albumin prescribing, guideline adherence increased 

from 47.64% to 68.26% (P = 0.014), and 60.15% of 

alerts resulted in prescription modification; a patient -

safety composite improved from 63.33% to 82.61% (P = 

0.009), supporting measurable improvements in 

prescribing quality aligned with medication safety 

objectives [17].   

 

In addition, a hospital admission prioritization tool for 

medication reconciliation improved yield of identifying 

patients with at least one unintended discrepancy, from 

21% using the existing approach to 45% using the 

machine-learning tool in a simulated real-life evaluation, 

representing a reported 113% relative improvement in 

targeting high-risk admissions for pharmacist review 

[18]. A second commonly addressed outcome domain 

was predictive performance for identifying high-risk 

prescriptions or high-risk patients (often reported as 

area under the receiver operating characteristic curve 

[AUROC]. and/or precision–recall metrics). A hybrid 

machine-learning CDSS designed to prioritize 

prescription checks in hospitalized  patients  was totally 
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developed and evaluated on 10,716 patients (16,270 

prescriptions), achieving an AUROC of 0.81 and an 

average precision of 0.75 for identifying prescriptions at 

high risk of medication error [13].  The admission-based 

medication error risk tool trained on 7,200 reconciled 

admissions reported recall of 0.75, precision of 0.65, F1 

score of 0.70, AUROC of 0.74, and area under the 

precision–recall curve (AUPRC) of 0.75, consistent with 

moderate discriminative ability in a clinically relevant, 

pharmacist-facing prioritization use case [18].  For 

inpatient wards, a prediction model for in-hospital ADE 

risk at admission (5,017 admissions; 488 ADEs) 

achieved AUROC 0.752 with favorable calibration 

(calibration slope 0.997) and a Brier score of 0.056, 

supporting feasibility of early risk stratification as part 

of medication safety surveillance and targeted review 

[19].   

 

In NICU settings, a machine-learning medication error 

detection system achieved high diagnostic performance 

(AUROC 0.97; sensitivity 0.97; specificity 0.90; accuracy 

0.91; F1 score 0.92), indicating strong discriminative 

performance for error detection in high-complexity 

neonatal prescribing and administration environments 

[20]. A third outcome domain frequently quantified 

across studies was alert burden, alert filtering potential, 

and/or clinically meaningful alert acceptance, reflecting 

the implementation tension between sensitivity for 

harm prevention and usability constraints such as alert 

fatigue. In a large-scale evaluation of medication alerts, 

a gradient-boosting model (LightGBM) evaluated 

3,481,634 alerts while maintaining sensitivity fixed at 

0.99; precision reached 0.192 and the approach was 

estimated to reduce alert volume by 54.1%, illustrating 

potential to remove low-value alerts while preserving a 

low false-negative rate threshold [14].   

 

Complementary work modeling clinician response to 

drug-related computerized alerts reported strong 

discrimination for predicting physician response 

(AUROC 0.916) with a positive predictive value of 0.871 

and specificity of 0.833 across 3,885 alerts, supporting 

feasibility of response-aware alert personalization as a 

medication safety strategy (particularly where 

acceptance is necessary for error interception) [15].  

Notably, the inpatient deployment with a very low alert 

rate (0.4% of orders) simultaneously achieved high 

clinical validity (85%) and substantial order-change 

impact (43%), suggesting that prioritization and 

targeted alerting could mitigate alert fatigue while 

preserving safety impact [12]. Between-study 

differences that  plausibly  explained  divergent  findings  

 

 

 

were primarily attributable to (i) heterogeneity in the 

medication-use process targeted (prescribing/order 

entry vs reconciliation vs administration monitoring), 

(ii) differing definitions and denominators for 

“medication error” (protocol deviations, unintended 

discrepancies, ADEs, alert-triggered potential errors), 

and (iii) different operating points chosen for model 

deployment (high sensitivity thresholds vs higher 

precision/low-burden thresholds). For example, the 

PICU study evaluated a low-incidence baseline 

environment (protocol deviations <1%), where absolute 

reductions were small but clinically meaningful, 

whereas large-scale alert filtering work optimized 

precision under a fixed sensitivity (0.99), prioritizing 

safety at the cost of relatively low precision (0.192) in 

exchange for major alert-volume reduction [14,16]. 

 

 Hospital admission risk tools and ADE prediction 

models relied on retrospective electronic health record 

(EHR) features and were evaluated by predictive 

metrics and yield-of-review rather than direct error-rate 

reduction, which limited direct comparability to pre–

post prescribing error studies that quantified actionable 

deviations and modifications [18,19].  Differences in 

clinician workflow integration also likely contributed: 

systems embedded at pharmacist verification or 

admission medication reconciliation emphasized 

prioritization and yield, while prescribing-time alerting 

and administration monitoring emphasized real-time 

interception and mismatch detection [12,18,21]. 

Secondary outcomes were variably reported and 

included workflow timing, system responsiveness to 

changing patient status, and technology performance for 

administration-phase safety. In the inpatient CDSS 

deployment, 60% of alerts were triggered after 

medication dispensing due to changes in patient status. 

 

This is highlighting a clinically relevant monitoring 

function beyond static order review [12].  In the ICU 

albumin MDSS evaluation, alert responsiveness varied 

by indication, implying context-dependent clinician 

acceptance and the need for indication-specific tuning to 

reduce inappropriate overrides [17].  For IV 

administration safety, a multimodal infusion pump 

monitoring approach using convolutional neural 

network–based deep learning demonstrated high 

technical performance: training/validation/ tes t 

accuracies of 98.3%, 97.7%, and 98.5%, respectively, 

and infusion-rate estimation percentage errors of 0.22 –

2.90% in evaluation experiments, supporting feasibility 

of real-time mismatch detection between pump settings 

and actual infusion with exact states/prescriptions [21].   
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Finally, unsupervised outlier detection applied to 

medication orders demonstrated feasibility of 

identifying potential prescribing errors at scale 

(563,960 medication items), although the reporting 

emphasized detection capability rather than 

downstream clinical outcomes, limiting inference about 

real-world error prevention impact [22]. Overall, the 

synthesized evidence indicated that AI-enabled (or 

algorithmically enhanced) medication safety systems 

deployed in inpatient and perioperative-adjacen t 

hospital settings were consistently capable of 

prioritizing high-risk prescriptions/patients, reducing 

selected categories of prescribing deviations, and/or 

lowering alert burden through filtering and response-

aware strategies [12–22].   

 

However, results were not directly comparable across 

studies due to substantial heterogeneity in target 

processes, definitions, denominators, deployment 

thresholds, and outcome measurement. These findings 

set up the Discussion by highlighting the trade-offs 

between sensitivity, precision, alert burden, and clinical 

integration, and by indicating where future evaluations 

should prioritize standardized outcome definitions, 

prospective impact assessment on preventable ADEs, 

and implementation science measures alongside 

predictive accuracy. 

 

 

Discussion 

 

Across the 11 included studies, artificial intelligence –

enabled medication safety systems were most 

consistently associated with improvements in signal-to-

noise at the prescribing or verification interface and 

with more efficient targeting of clinician attention to 

higher-risk situations, rather than with direct 

demonstrations of reduced preventable harm at the 

patient level. In the inpatient outlier-detection clinical 

decision support system (CDSS) evaluation, the alert 

burden remained very low (315 alerts across 78,017 

medication orders; 0.4% of prescriptions), while the 

majority of alerts were clinically valid (85%) and 

frequently actionable, with 43% prompting medication 

discontinuation or modification within a median of 1 

hour (interquartile range 0.07–4 hours) [12].  This 

pattern aligned with earlier evidence indicating that 

computerized provider order entry (CPOE) and 

conventional decision support interventions often 

reduced medication error rates but were frequently 

underpowered to detect reductions in adverse drug 

events in  controlled  evaluations [23,25].  The  included  

 

 

 

prescription-check prioritization tool similarly 

emphasized discriminative capacity (area under the 

receiver operating characteristic curve 0.81; area under 

the precision–recall curve 0.75) rather than patient 

harm endpoints, illustrating the broader trend in which 

machine learning (ML) was positioned as a “screening 

amplifier” embedded within pharmacist workflows 

rather than a standalone preventive intervention [13].  

The unsupervised outlier approach tested on 563,000+ 

prescribed medications reflected the same logic, 

leveraging distributional abnormality to detect potential 

dose and frequency anomalies when labeled “ground 

truth” was scarce [22].   

 

When interpreted alongside historical implementation 

research, the included studies collectively suggested 

that effective medication safety informatics, whether 

classical CDSS or ML-enhanced, was most likely to have 

been successful when it was delivered as part of clinician 

workflow and produced action-oriented 

recommendations at the time and place of decision -

making, characteristics previously associated with 

improved practice effects in randomized and controlled 

studies of decision support [24]. Evidence in pediatric 

and neonatal intensive care settings further 

contextualized how ML-oriented tools were evaluated 

against a backdrop of high baseline medication 

complexity and relatively low tolerance for alert 

overload.  

 

In the pediatric intensive care unit (PICU) dosing CDSS 

evaluation, the incidence of protocol deviations 

requiring adjustment fell from 11/5,034 (0.22%) pre-

implementation to 2/4,308 (0.05%) post-

implementation, corresponding to a post-versus-pre 

relative risk (RR) of 0.21 (95% confidence interval [CI]. 

0.05–0.96) for deviations requiring adjustment; 

unjustified deviations similarly fell from 28/5,034 

(0.56%) to 10/4,308 (0.23%), RR 0.42 (95% CI 0.20–

0.86) [16].  Although absolute event rates were small, 

these changes were consistent with the notion that 

pediatric intensive care medication error prevention 

frequently relied on narrowly specified dose-range 

checking integrated into routine ordering, rather than 

on broad-spectrum alerting. This observation was 

compatible with broader pediatric and neonatal 

intensive care evidence indicating that medication 

errors occurred frequently in these environments (e.g., 

median pediatric intensive care unit medication error 

rates reported as 14.6 per 100 medication orders, with 

neonatal intensive care unit rates ranging up to 77.9 per 

100  medication  orders  in  published  quantitative good 
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studies), underscoring the importance of interventions 

that reduced risk while maintaining usability [30].  In 

the neonatal intensive care unit (NICU) ML model study, 

the algorithmic output addressed error prediction at a 

population level rather than offering narrow dose 

checks; the model achieved an area under the curve 

(AUC) of 0.920 (95% CI 0.876–0.970) for predicting the 

presence of medication errors and identified that 

physician- and nurse-related medication errors were 

common (42.2% and 57.0% of patients, respectively) in 

the analyzed cohort [20].  Together, the pediatric critical 

care findings suggested that the most credible pathway 

for ML in these settings was likely to have been precision 

screening and prioritization rather than expansive alert 

generation, consistent with clinically observed 

constraints around alarm load and the need for high 

value-per-alert. 

 

The admission-focused ML studies reinforced 

that resource allocation was a central mechanism by 

which AI-assisted systems may have improved 

medication safety outcomes. The hospital admission 

medication reconciliation prioritization tool improved 

the yield of identifying patients with at least one 

unintended discrepancy from 23/110 (21%) under the 

conventional approach to 49/110 (45%) under the ML 

tool, RR 2.13 (95% CI 1.40–3.24) for discrepancy 

identification under fixed review capacity [18].  This 

approach complemented established medication 

reconciliation evidence, where pharmacist-led 

programs were associated with reductions in post-

discharge healthcare utilization; in a systematic review 

and meta-analysis of pharmacist-led medication 

reconciliation at hospital transitions, pooled estimates 

showed reductions in adverse drug event–related 

hospital revisits (RR 0.33, 95% CI 0.20–0.53), 

emergency department visits (RR 0.72, 95% CI 0.57–

0.92), and readmissions (RR 0.81, 95% CI 0.70–0.95) 

[31].   

 

Interpreted together, these findings suggested that ML-

based prioritization could have functioned as an 

upstream “triage layer” that increased the efficiency of 

pharmacist-led reconciliation programs, potentially 

allowing the same staffing to cover more high-risk 

admissions or to increase the intensity of review among 

those most likely to harbor clinically relevant 

discrepancies. A parallel admission-time model aimed at 

predicting inpatient adverse drug events also illustrated 

the practical challenge of low event prevalence for 

operational deployment: despite acceptable the 

discrimination (gradient boosting machine AUC 0.747,  

 

 

 

95% CI 0.735–0.759; AUC–precision–recall 0.134, 95% 

CI 0.131–0.137), low positive predictive performance 

remained likely when adverse drug event incidence was 

low, implying that the principal benefit could have been 

in reliably identifying low-risk patients for whom 

intensive review may not have been needed [19].  Thus, 

the included admission-time studies collectively implied 

that the principal comparative advantage of ML may 

have been targeting rather than replacing clinical 

judgment, and that evaluation frameworks emphasizing 

precision–recall were better aligned with clinical 

operations than receiver-operating curve metrics alone. 

Alert fatigue and clinician response behavior emerged as 

a critical interpretive lens for the included studies that 

focused on CDSS alert filtering and physician response 

prediction.  

 

The large alert-log study demonstrated that, with 

sensitivity fixed at 0.99, a gradient boosting approach 

achieved precision 0.192 and could have reduced alert 

volume by 54.1%, suggesting that substantial 

reductions in alert exposure could have been achieved 

without materially increasing false negatives beyond a 

pre-specified threshold [14].  Complementarily , 

physician response prediction models trained on 

disease medication–related CDSS alerts achieved strong 

discrimination (artificial neural network AUROC 0.94, 

accuracy 0.85, sensitivity 0.87, specificity 0.83) [15].  

These findings were interpretable against a 

longstanding body of literature documenting high 

override rates for drug safety alerts in CPOE systems 

(overrides reported in the range of 49% to 96% across 

included studies in a major review), indicating that high-

volume, low-specificity alerting could have produced 

error-prone conditions rather than safety gains [28].  

The included ML filtering findings therefore suggested 

that AI would have been most beneficial when it reduced 

exposure to low-value alerts while preserving detection 

of high-risk events with high sensitivity.  

 

However, the same mechanism also implied a risk: if 

model drift, documentation changes, or policy changes 

shifted alert characteristics over time, ML-based 

suppression strategies could have inadvertently 

concealed clinically important warnings, reinforcing the 

importance of local monitoring and ongoing model 

governance as part of routine CDSS maintenance. The 

included interventional and monitoring studies in 

administration-stage medication safety suggested that 

AI systems may have contributed most directly when 

matched to well-defined, high-risk failure modes. The 

infusion  monitoring  system used a multimodal  sensing  
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and deep learning to detect mismatches between 

infusion pump settings, the actual infusion state, and 

prescribing instructions in real time; it achieved 

training/validation/test accuracies of 98.3%, 97.7%, 

and 98.5% and infusion-rate estimation errors in the 

range of 0.22–2.90%, indicating strong technical 

performance under evaluation conditions [21].  This 

result was consonant with prior evidence on smart 

infusion pumps, where systematic review findings 

indicated that smart pumps intercepted wrong-rate, 

wrong-dose, and pump-setting errors but were limited 

by compliance issues and high override rates for “soft 

limits,” suggesting that technical capability alone was 

insufficient without high-fidelity clinical integration 

[27].   

 

In contrast to infusion-stage systems, barcode-

supported administration technologies provided a well -

established benchmark for measurable reductions in 

administration errors. In a before-and-after clinical trial 

of barcode-enabled electronic medication 

administration records (eMAR), nontiming 

administration errors fell from 11.5% to 6.8% (relative 

reduction 41.4%, P<0.001), and potential adverse drug 

events (excluding timing-related) fell 

from 3.1% to 1.6% (relative reduction 50.8%, P<0.001), 

while transcription errors were eliminated 

(from 6.1% to 0%) [26].  When these comparisons were 

made, the included AI infusion monitoring evaluation 

appeared promising but comparatively early in 

translational maturity, because it emphasized device -

level accuracy metrics rather than demonstrable 

reductions in medication errors or adverse events in 

routine care pathways. 

 

The systematic review title addressed perioperative and 

inpatient medication errors, yet the included evidence 

base remained weighted toward inpatient prescribing, 

alert optimization, pediatric dosing support, and 

admission-time reconciliation or harm prediction, with 

limited direct evaluation in perioperative medication 

preparation and administration workflows. This 

imbalance was important because the perioperative 

medication-use process carried distinct risks and time 

pressures; in prospective observational work, 

medication errors and/or adverse drug events were 

observed in 5.3% of perioperative medication 

administrations (95% CI 4.5–6.0), with 79.3% deemed 

preventable and a substantial proportion classified as 

serious, indicating a high-risk environment where rapid, 

ergonomic safety defenses would have been needed 

[29].  The included the ICU medication decision  support  

 

 

 

intervention demonstrated how targeted systems could 

have improved guideline adherence and altered 

prescribing behavior in a high-acuity context (guideline 

adherence increased from 47.64% to 68.26%, 

and 60.15% of alerts led to prescription modification) 

[17], but the generalizability of these effects to 

anesthesia medication preparation and administration 

remained uncertain. The cross-cutting methodological 

signal across the included studies was that model 

performance was strongly shaped by outcome definition 

and by event prevalence. For example, admission-time 

adverse drug event prediction achieved AUCs 

near 0.75 but exhibited low AUC–precision–recal l 

values (approximately 0.13–0.14) despite statistically 

significant improvements over logistic regression. 

 

This is demonstrating that “good discrimination” could 

coexist with limited operational value if the downstream 

workflow required high positive predictive value to 

justify interruption or manual review [19].  

Consequently, the included evidence suggested that the 

most plausible near-term safety impact of AI systems 

may have been achieved when algorithms were used to 

(i) prevent egregious dosing and protocol deviations in 

pediatrics [16], (ii) provide low-burden, high-validity 

outlier alerts that triggered order modification [12], and 

(iii) improve the yield of scarce pharmacist 

reconciliation resources through risk-based selection 

[18], rather than when they attempted to 

comprehensively replace conventional medication 

safety infrastructure. This systematic review had several 

limitations that may have influenced the completeness 

and interpretability of the synthesized evidence.  

 

The search strategy primarily relied on PubMed and 

English-language publication constraints, which may 

have excluded relevant evaluations indexed exclusively 

in other biomedical or engineering databases or 

published in non-English journals. The heterogeneity of 

study designs, target settings (inpatient wards, pediatric 

intensive care units, neonatal intensive care units, and 

intensive care units), and outcome definitions (protocol 

deviations, unintended discrepancies, alert filtering 

performance, guideline adherence, adverse drug event 

prediction, and device-monitoring accuracy) precluded 

meaningful quantitative pooling and increased the risk 

that narrative synthesis overstated coherence across 

fundamentally different interventions. Additionally, 

most included evaluations were single-center or system-

specific, which may have limited external validity and 

amplified the influence of local workflows, prescribing 

culture,  and the baseline  safety  infrastructure. Finally, 
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because the review did not include protocol registration, 

there was an increased risk that methodological 

decisions (e.g., subgroup emphasis) were influenced by 

the available evidence base rather than strictly 

prespecified analytic intent. Despite these limitations, 

the review had several strengths. The included evidence 

was restricted to clinical trial or cohort-type evaluations 

embedded in real hospital care, thereby prioritizing 

translational relevance over purely simulated modeling 

studies and enabling interpretation in terms of real 

implementation constraints (alert burden, workflow 

integration, and actionable decision-making).  

 

The synthesis incorporated multiple medication -use 

stages (prescribing/order verification, admission 

medication reconciliation, administration monitoring) 

and emphasized both clinically anchored outcomes 

(order modification, discrepancy yield, protocol 

deviation reduction) and implementation -rele van t 

metrics (precision under fixed sensitivity, area under 

the precision–recall curve), which strengthened 

interpretability for safety engineering and hospital 

governance. Moreover, the external comparisons 

contextualized the AI findings within the broader 

evolution of medication safety interventions , 

CPOE/CDSS, barcode eMAR, and smart pump 

infrastructures, highlighting where AI-enhanced 

systems appeared to extend existing approaches versus 

where they remained earlier-stage proofs of capability. 

 

Overall, the evidence synthesized in this review 

indicated that AI-enabled medication safety systems 

were most consistently associated with improvements 

in targeted detection and prioritization, low-burden 

outlier alerting with high clinical validity and frequent 

order modification [12], improved prioritization of high -

risk prescriptions [13,22], reduced pediatric protocol 

deviations [16], enhanced yield of medication 

reconciliation activities (RR 2.13, 95% CI 1.40–3.24) 

[18], and improved discrimination for adverse drug 

event prediction with explicit limitations under low 

event prevalence (AUC 0.747, 95% CI 0.735–0.759; 

AUC–precision–recall 0.134, 95% CI 0.131–0.137) [19].  

The clearest comparative lesson from external literature 

was that technology-mediated medication safety gains 

historically occurred when systems were integrated into 

workflow and produced measurable reductions in high -

frequency errors (e.g., barcode eMAR relative 

reductions of 41.4% in nontiming administration errors 

and 50.8% in potential adverse drug events) [26], while 

persistent challenges such as alert overriding (49–96%) 

limited the impact of poorly tuned the drug safety alerts  

 

 

 

[28].  For Saudi Arabia, the national medication error 

reporting evidence demonstrated that reported 

medication errors were concentrated in the prescribing 

stage (84.8%), that only 5.8% reached patients, and that 

work overload and lack of experience were commonl y 

associated contributing factors (31.6% and 22.7%, 

respectively) [32].  In perioperative practice, a Saudi 

survey indicated that 69% of anesthesia clinicians had 

experienced anesthetic drug errors at least once, with 

haste and workload prominent contributors (each 

60.3%) and fear of medicolegal consequences acting as 

a major barrier to reporting (77.7%) [33].  These 

patterns suggested that Saudi implementation priorities 

could have emphasized AI-supported optimization of 

prescribing surveillance and reconciliation targeting in 

parallel with perioperative human-factors interventions 

(standardized syringe labeling, double-check systems, 

and technology-assisted verification), with explicit 

attention to nonpunitive safety culture and 

measurement strategies that linked AI deployment to 

reductions in clinically meaningful errors and 

preventable harm. 

 

 

Conclusions 

 

The available hospital-based evidence indicated that 

artificial intelligence–enabled medication safety 

systems generally supported prevention of medication 

errors in perioperative-adjacent and inpatient care by 

improving identification and prioritization of high-risk 

prescriptions or patients, strengthening prescribing 

quality and guideline adherence in implementation 

evaluations, and reducing the operational burden of 

medication safety surveillance through more selective, 

response-aware alerting. The most consistent benefits 

were observed when these tools were tightly integrated 

into routine clinical workflows, such as order entry, 

pharmacist verification, medication reconciliation, or 

real-time administration monitoring, and configured to 

deliver low-burden outputs with high clinical relevance. 

At the same time, direct comparison of effect sizes across 

studies was constrained by heterogeneity in settings, 

definitions of medication error, outcome denominators, 

and evaluation designs, and relatively few reports 

assessed preventable adverse drug events or sustained 

patient-level outcomes over longer follow-up. 
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Table 1. Characteristics and key findings of the studies included in the review on Artificial Intelligence in 

Medication Safety Systems for the Prevention of Perioperative and Inpatient Medication Errors  

Study 

Reference 
Study Design Population 

Intervention / 

Exposure 

Disease / 

Condition 
Main Outcomes 

[12]. Segal et 

al., 2019 

Implementation 
cohort 

Adult inpatients 
(hospital wards) 

Probabilistic ML 
outlier-detection 

CDSS 

Inpatient 
medication 

safety 

Alerts 0.4% of orders; 85% 
clinically valid; 43% led to order 

change; median response 1 h. 

[13]. Corny 

et al., 2020 

Development/val
idation cohort 

Hospitalized 
adults (multiple 

units) 

ML-CDSS to 
prioritize high-

risk prescriptions 

Medication 
error risk 

(prescribing) 

AUROC 0.81; AUPRC 0.75 for 
high-risk prescription detection. 

[14]. Liu et 

al., 2022 

Retrospective 
cohort 

Hospital 

medication alert 

logs 

ML filtering of 

medication alerts 

(GBM) 

Alert fatigue / 
safety alerts 

At sensitivity 0.99: precision 0.192; 

estimated 54.1% alert-volume 

reduction. 

[15]. Poly et 

al., 2020 

Development/val
idation cohort 

Clinician-

handled CDSS 
alerts 

ANN model 

predicting alert 
acceptance 

Alert fatigue / 

decision 
support 

AUROC 0.94; accuracy 0.85; 

sensitivity 0.87; specificity 0.83 for 
response prediction. 

[16]. 

Hashemi et 

al., 2022 

Pre–post cohort 
Pediatric ICU 

(PICU) patients 

Dosing CDSS 

integrated in 
prescribing 

PICU 

prescribing 
errors 

Dose deviations needing adjustment 
RR 0.21 (95% CI 0.05–0.96); 
unjustified deviations RR 0.42 

(95% CI 0.20–0.86). 

[17]. Dashti 

et al., 2025 
Pre–post cohort 

ICU patients 
prescribed 
albumin 

Medication 
decision support 
system (MDSS) 

ICU 
prescribing 

quality 

(albumin) 

Guideline adherence 
47.6%→68.3%; 60.2% alerts 

modified orders; safety composite 

63.3%→82.6%. 

[18]. Abdo et 

al., 2024 

Development + 
simulation 

cohort 

Hospital 
admissions at 

intake 

ML tool to 
prioritize high-
risk admissions 

Medication 
errors / 

reconciliation 

AUROC 0.74; discrepancy yield 
45% vs 21% (RR 2.13, 95% CI 

1.40–3.24) in evaluation subset. 

[19]. 

Langenberg

er et al., 

2023 

Development/val

idation cohort 

Adult ward 

admissions 

ML prediction of 
in-hospital ADE 

risk 

Adverse drug 

events 

AUROC 0.752; Brier 0.056; 
calibration slope 0.997 at 

admission. 

[20]. Yalçın 

et al., 2023 

Development/val

idation cohort 

Neonatal ICU 

(NICU) patients 

ML-based 
medication error 

detection 

NICU 
medication 

errors 

AUROC 0.97; sensitivity 0.97; 
specificity 0.90; accuracy 0.91; F1 

0.92. 
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[21]. Hwang 

et al., 2021 

Technical 

validation study 

IV infusion 

administrations 

Multimodal deep-
learning pump 

monitoring 

IV 
administration 

safety 

Accuracy 98.5%; infusion-rate error 
0.22–2.90% in evaluation 

experiments. 

[22]. Dos 

Santos et al., 

2019 

Retrospective 
data-mining 

study 

Large 
prescribing 

dataset 

Unsupervised 
outlier detection 

(DDC-Outlier) 

Prescribing 
anomaly 

detection 

Identified outlier prescriptions for 
review at scale; downstream clinical 

impact not quantified. 

Abbreviations: AI, artificial intelligence; ANN, artificial neural network; AUPRC, area under precision–recall curve; 
AUROC, area under receiver operating characteristic curve; CDSS, clinical decision support system; CI, confidence interval; 

GBM, gradient boosting machine; ICU, intensive care unit; IV, intravenous; ML, machine learning; MDSS, medication 

decision support system; NICU, neonatal intensive care unit; PICU, pediatric intensive care unit; RR, relative risk.  
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