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Background:

Medication errors are a major source of preventable harm in perioperative and inpatient care, and artificial
intelligence (Al) is increasingly used to strengthen medication safety systems.

Methods:

PubMed was searched from inception to September 2025 for English-language human studies evaluating Al-
enabled medication safety interventions in hospital perioperative or inpatient settings. Two reviewers screened
records, extracted data in duplicate, and appraised risk of bias using Joanna Briggs Institute checklists; results
were synthesized narratively without meta-analysis.

Results:

Eleven studies, predominantly retrospective cohorts or pre-post implementations, were included across adult
wards, intensive care, pediatric/neonatal intensive care, and intravenous administration monitoring, with
samplesizesrangingfrom 311 1CU prescribing episodesto 3,481,634 alert events. Discrimination for identifying
high-risk prescriptions or patients was moderate to high (AUROC 0.74-0.97). Improvements were reported in
key process measures, including reduced pediatric ICU dosing deviations (RR 0.21; 95% CI 0.05-0.96), higher
reconciliation discrepancy yield with admission prioritization (45% vs 21%; RR 2.13; 95% CI 1.40-3.24), and
lower alert burden (54.1% reduction at sensitivity 0.99; precision 0.192); one deployment triggered alerts for
0.4% of orders and 43% prompted order changes.

Conclusions:

Al-enabled medication safety systems were associated with improved identification and management of high-
risk medication scenarios and more efficient safety surveillance. Evidence remained heterogeneous, and
preventable adverse drug events and longer-term patient outcomes were infrequently measured.
Keywords:

Medication Errors, Patient Safety, Artificial Intelligence, Machine Learning, Clinical Decision Support Systems,
Perioperative Care
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Introduction

Medication errors can be conceptualized as preventable
failures anywhere along the medication-use process
(e.g, prescribing, order communication/transcription,
dispensing, administration, and monitoring) that may
lead to inappropriate medication use and/or patient
harm. Across healthcare systems, observational meta-
analytic synthesis has estimated that preventable
medication harm occurs in roughly 3% of patient-
incidence records (95% CI 2%-4%), while overall
medication harm occurs in 9% (95% CI 7%-11%), with
substantial heterogeneity across settings and study
designs [1]. Importantly for the present protocol, the
same meta-analysis observed higher rates of
preventable medication harm in intensive care (7%,
95% CI 4%-12%) and highly specialized orsurgical care
(6%, 95% CI 3%-11%) compared with many other
clinical contexts, and it identified prescribing and
monitoring as prominent sources of the highest
prevalence rates of preventable harm [1].

These findings motivate a systems-oriented lens:
“medication safety systems” in modern hospitals
increasingly rely on layered safeguards, workflow
checks, standardization, and digital infrastructure, to
reduce the probability that a single human lapse
propagates into patient harm [1]. While medication
errors are frequently described as ubiquitous but
“mostly low harm” events, high-quality national
modeling illustrates that even modest per-event harm
probabilities translate into major aggregate burden. In
England, an economic analysis estimated 237 million
medication errors annually across the medication
process, with 38.4% occurring in primary care; 72% had
little or no potential for harm, yet approximately 66
million were considered potentially clinically significant
[2]. The same analysis estimated that definitely
avoidable adverse drug events cost the National Health
Service £98,462,582 per year, consumed 181,626 bed
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days, and caused or contributed to 1,708 deaths
(including both primary-care adverse drug events
leading to admission and secondary-care events leading
to longer hospital stay) [2]. These quantitative estimates
support the rationale for prevention strategies that are
not limited to “rare catastrophic” events, but instead
strengthen system resilience against common, workflow -
driven failures that can scale into large societal impact
[2]. Evidence synthesized specifically for high-acuity
inpatient environments also reinforces that
perioperative and critical-care care pathways have
distinctive  error mechanisms and measurement
challenges. A systematic review focusing on operating
rooms and intensive care units reported an operating
theatre medication error rate range of 7.3%-12% and an
intensive care unit medication error rate range of1.32%-
31.7%, derived from studies published between 2017
and 2023 [3].

In Saudi Arabia, national database studies provide
complementary process-stage insight
nationwide observational analysis of reports submitted
to a Ministry of Health pharmaceutical-care database
(March 2018-June 2019) identified 71,332 medication
error events, with 84.8% occurring during prescribing,
5.8% during transcribing, and 5.7% during dispensing;
5.8% of reported errors reached the patient, and
reporters associated 31.6% of errors with work overload
and 22.7% with lack of experience [4]. More recent
analysis of reported medication errors from January
2023 to December 2024 across nine Ministry of Health
hospitals evaluated 19,645 errors, reporting that 69.1%
were intercepted Dbefore reaching patients, that
prescribing constituted 94.8% of events, and that
pharmacists reported more than 90% of cases [5].
Although individual drug-class analyses are not directly
generalizable to all inpatient medications, national
database work on clozapine-related medication caused
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errors further illustrates that most reported events may
not reach patients (92.3% did not reach the patient) and
that harm is uncommon among those that do (reported
harm 0.3% in this dataset), reinforcing both the value and
the limitations of incident-reporting signals for estimating
“true incidence.” [6]. Taken together, contemporary
quantitative evidence indicates that medication error
prevention is a high-yield patient safety target globally
and within Saudi Arabia, but the burden manifests
differently depending on denominators, detection
methods, and care context. Globally, preventable
medication harm prevalence estimates (3%, 95% CI 2%-
4%) and setting-specific peaks in intensive care and
surgical/specialized care (e.g, intensive care 7%, 95% CI
4%-12%; specialized/surgical care 6%, 95% CI 3%-11%)
support prioritization of inpatient and perioperative
pipelines where exposure to high-alert intravenous
agents and rapid titration is common [1].

In parallel, system-level modeling in England translates
medication errors into concrete resource and mortality
impacts (e.g, £98.5 million/year for definitely avoidable
adverse drug events and 1,708 deaths/year in the
modeled framework), making the case that even
incremental prevention at population level can have
meaningful downstream benefits [2]. Within Saudi
Arabia, the sheer scale of reported errors (71,332 events
in a 16-month national reporting window, with most
originating at prescribing and <10% reaching the
patient) suggests that prevention strategies should be
designed both to reduce upstream error generation and
to strengthen downstream interception reliability [4].
More recent multi-hospital analysis (19,645 reported
errors across 2023-2024, with 69.1% intercepted
before reaching the patient and prescribing
representing 94.8%) highlights a contemporary pattern
in which prescribing-stage vulnerability remains
dominant, while interception is frequent but not
universal [5].

Specialized analyses of high-risk medications (e.g.,
clozapine) indicate similar stage concentration and high
interception proportions, but also point to policy,
process standardization, and reporting culture as
recurring contributors that are actionable targets for
informatics-enabled safeguards [6]. Perioperative
medication safety has distinct human-factors stressors,
time pressure, parallel tasking, rapid physiological
consequences, and frequent use of look-alike/sound-
alike (LASA) preparations, that can place exceptional
reliance on local workflow design and team experience.
In Saudi Arabia, a cross-sectional survey of anesthesia
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clinicians reported that 69% had experienced an
anesthetic drug error at least once in their career, with
“haste” and “heavy workload” each reported by 60.3%
as primary causal factors, and with less experience
associated with more committed errors; respondents
also indicated that fear of medicolegal issues was a
major barrier to reporting [7]. Large retrospective
perioperative data from Japan similarly emphasizes
provider-level experience as a measurable risk factor:
intraoperative medication errors occurred in 102 of
100,093 procedures (0.10%), and compared with
attending anesthesiologists, the adjusted odds of
medication error were higher when care involved
residents (odds ratio [OR]. 2.713, 95% CI 1.283-6.815)
or interns (OR 3.272, 95% CI 1.508-8.368) [8].
Importantly, the target condition for this protocol,
perioperative and inpatient medication errors, spans
both “rare but high-severity” events that nonetheless
generate downstream costs [2].

From a prevention-technology standpoint, operating-
room clinical decision support 1is increasingly
recognized as a credible intervention layer: in a
retrospective cross-sectional review of self-reported
intraoperative medication errors, 76 of 80 (95%) were
classified as preventable by clinical decision support
algorithms, with wrong-medication and wrong-dose
errors among those most consistently rated
preventable, while inadvertent bolus errors were least
preventable by this approach [9]. These findings
collectively support a hybrid prevention model in which
technology is not treated as a substitute for expertise,
but as an adaptive barrier that strengthens weak points
attention, and communication,
especially during high workload and high stakes [2,7-9].
However, current evidence indicates important
translational gaps.

in human memory,

A perioperative digital-health viewpoint highlights that
Al-enabled decision support and health information
technology tools (e.g, computerized provider order
entry, electronic medication administration records,
barcode medication administration) are plausible
mechanisms to reduce perioperative medication errors,
but it also emphasizes measurement and
implementation challenges specific to the perioperative
domain [10]. In the inpatient prescribing context, a
scoping review of Al used to optimize medication alerts
found only 10 quantitative studies; positive predictive
value ranged from 9% to 100%, only 30% reported both
statistical performance and clinical outcomes, only two
studies implemented Al-based alerts in hospital current
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practice, and none performed external validation [11].A
large retrospective study of an implemented machine
learning-based clinical decision support system
(MedGuard) reported 1,206,895 prescriptions with a
2.36% alert rate (28,536 alerts), 48.88% alert
acceptance, and identification of 470 intercepted errors
(1.64% of alerts; 16.4 intercepted errors per 1,000
alerted orders), suggesting a potentially favorable
balance between alert volume and actionable yield, but
generalizability remains uncertain [12]. Meta-analytic
work on determinants of medication-related alert
handling further indicates that acceptance behavior is
systematically associated with contextual factors (e.g.,
fellows vs residents OR 1.14, 95% CI 1.09-1.20;
weekday vs weekend OR 1.25, 95% CI 1.11-1.40),
underscoring that “human-in-the-loop” behavior is not
random noise but a measurable system component that
Al optimization efforts must address [13].

Beyond alerts, machine learning has been deployed to
prioritize admission medication reconciliation: a
predictive tool trained on 7,200 patients achieved an
area under the receiver operating characteristic curve of
0.74 and, in retrospective “real-life” simulation,
identified 45% of selected patients as having at least one
unintended discrepancy versus 21% using an existing
tool (reported improvement 113%) [14]. Finally,
natural language processing and machine learning
applied to unstructured electronic health record text
have shown promise for detecting under-reported
adverse drug events and safety signals, but evidence
remains limited and heterogeneous, with relatively few
studies and variable evaluation methods [15].
Collectively, these findings suggest that the field is
advancing, but still lacks consistent external validation,
perioperative-specific evaluation, and clear linkage
between Al-enabled medication safety systems and
patient-important outcomes across inpatient and
perioperative settings [10-16]. To systematically review
and synthesize evidence on artificial intelligence-

enabled medication safety systems that prevent
perioperative and inpatient medication errors,
evaluating their designs, implementation contexts,

effectiveness on error-related outcomes, and limitations
in validation and generalizability.

Methods

This systematic review was conducted and reported in
accordance with the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) 2020 in
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statement, with methods specified a priori but without
protocol registration (PRISMA-Item-24). The review
question addressed whether artificial intelligence-enabled
medication safety systems reduced or prevented
medication errors in perioperative and inpatient hospital
care.Eligible studies enrolled human participants receiving
perioperative care (preoperative, intraoperative, or
immediate postoperative phases) and/or inpatient care
(medical/surgical wards, intensive care units, emergency
department admissions leading to hospitalization) and
evaluated an artificial intelligence (AI) component
embedded in a medication-use process (prescribing,
transcribing, dispensing, administration, monitoring) or in
a medication safety platform (e.g., decision support,
surveillance, smart infusion oversight).

We included comparative and non-comparative primary
research designs relevant to implementation in real-world
clinical workflows (randomized trials, quasi-experimental
studies, interrupted time series, cohort studies, cross-
sectional evaluations, and prospective/retrospective
system validations performed in clinical settings). We
excluded editorials, narrative reviews, purely simulated
datasets without clinical deployment, conference abstracts
lacking sufficient methods/results for appraisal, and
studies focused exclusively on outpatient/community
pharmacy settings. Primary outcomes were medication
error occurrence, interception/detection rates, and
preventable adverse drug events; secondary outcomes
included alert performance metrics (e.g, sensitivity,
specificity, positive predictive value), workflow impact,
and user-acceptance measures.

The primary database searched was PubMed, from
inception to 30 September 2025 (PRISMA-Item-7).
Searches were performed using a combination of Medical
Subject Headings (MeSH) and free-text terms for (1) Al
methods, (2) medication errors and safety, and (3)
perioperative/inpatient hospital settings, with limits
applied to English language and humans. The exact PubMed
search string was: (("Artificial Intelligence"[Mesh]. OR

"Machine Learning"[Mesh]. OR "Natural Language
Processing"[Mesh]. OR "Clinical Decision Support
Systems"[Mesh]. OR artificial intelligence[tiab]. OR

machine learning[tiab]. OR deep learning[tiab]. OR neural
network*[tiab]. OR natural language processing[tiab]. OR
large language model*[tiab]. OR algorithm*[tiab]. OR
predictive model*[tiab]) AND ("Medication Errors"[Mesh].
OR  "Drug-Related Side Effects and Adverse
Reactions"[Mesh]. OR medication error*[tiab]. OR
prescribing error*[tiab]. OR administration error*[tiab].
OR dispensing error* [tiab]. OR adverse drug event* [tiab].
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OR medication safety[tiab]) AND ("Perioperative
Care"[Mesh]. OR "Surgical Procedures, Operative"[Mesh].
OR anesthesia[tiab]. OR perioperative[tiab]. OR
intraoperative[tiab]. = OR  postoperative[tiab]. = OR
"Inpatients"[Mesh]. OR inpatient*[tiab]. OR hospital*[tiab].
OR intensive care[tiab]. OR ICU[tiab]) AND ("Medication
Systems, Hospital'[Mesh]. OR "Computerized Provider
Order Entry"[Mesh]. OR "Barcode Technology"[Mesh]. OR
smart pump*[tiab]. OR infusion pump*[tiab]. OR
medication system*[tiab]. OR order entry[tiab]. OR e-
prescrib*[tiab]. OR surveillance[tiab]. OR monitoring
system*[tiab])) AND (english[lang]) AND (humans[MeSH
Terms]) AND ("1900/01/01"[Date - Publication].
"2025/09/30"[Date-Publication]). Reference lists of
included studies were also screened for additional eligible
records (backward citation searching), and Scopus was
searched as a secondary database using a conceptually
aligned strategy.

All records retrieved were exported from PubMed and
imported into a reference manager for duplicate removal
(PRISMA-Item-8). Duplicates were identified using
automated matching (title, authors, year, journal) followed
by manual confirmation for ambiguous cases. Two
reviewers independently screened titles and abstracts
against eligibility criteria using a structured screening
form, after completing a calibration exercise on a pilot set
of records to  harmonize interpretation  of
inclusion/exclusion rules. Full texts were retrieved for
potentially eligible records, and the same two reviewers
independently assessed full-text eligibility, documenting
exclusion reasons in a standardized log to support PRISMA
flow reporting (PRISMA-Item-16). Discrepancies at either
stage were resolved by discussion; if consensus could not
be reached, a third reviewer adjudicated. Where full texts
could notbe retrieved through institutional access, authors
were contacted.

Data were extracted using a standardized electronic
extraction form developed for Al-enabled medication
safety interventions (PRISMA-Item-9). The form was
piloted and refined before full extraction. Two reviewers
performed double data extraction independently,
capturing: study setting (country, hospital type, unit),
population (age group, surgical vs medical admissions),
clinical context (perioperative phase and/or inpatient
service line), Al approach (rule-based vs machine learning
vs deep learning vs natural language processing vs large
language model-based methods), data inputs (electronic
health record, computerized provider order entry logs,
medication administration records, smart pump telemetry,
pharmacy dispensing systems), comparator (usual care or
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non-Al clinical decision support), implementation
characteristics (integration point, alerting logic, user
workflow), and outcomes (medication error definitions,
detection/interception rates, preventable adverse drug
events, performance metrics, and process measures).
When studies reported multiple timepoints or units, all
eligible outcome measurements were extracted with
corresponding denominators and time windows. Conflicts
in extracted data were reconciled by consensus using the
full-text source as the arbiter; persistent disagreements
were resolved by a third reviewer. Where critical
numerical details were missing (e.g, denominators for
error rates), attempts were made to derive values from the
report; if derivation was not possible, the item was
recorded as not reported. Risk of bias was assessed at the
individual study level using Joanna Briggs Institute (JBI)

Critical Appraisal Checklists matched to study design.

Two reviewersindependently appraised each study aftera
calibration exercise to standardize domain interpretation.
Each checklist item was rated as “Yes,” “No,” “Unclear,” or
“Not applicable,” and disagreements were resolved by
discussion with third-reviewer adjudication if required.
Overall risk-of-bias judgments were derived using a rule-
based approach: low risk when key domains for the
relevant design were met with no critical failures,
moderate risk when one or more key domains were rated
“Unclear” without critical failures, and high risk when one
or more critical domains were rated “No.” No study was
excluded solely on the basis of risk-of-bias ratings; instead,
these judgments informed the strength and caution of
narrative conclusions. Because of expected clinical and
methodological heterogeneity across Al approaches,
implementation contexts, outcome definitions, and study
designs, quantitative meta-analysis was not performed and
no statistical heterogeneity metrics were calculated
(PRISMA-Item-13).

Findings were synthesized narratively using a structured
framework that grouped studies by (1) care context
(perioperative vs general inpatient vs intensive care), (2)
medication-use process targeted (prescribing/order entry,
pharmacy verification/dispensing, administration
including smart infusion oversight, and
monitoring/surveillance), and (3) Al method family
(machine learning/deep learning predictive models,
natural language processing for text-based signals, and
hybrid systems combining rules with learned models).
Within each subgroup, results were summarized by
direction and consistency of effect on medication error
reduction or interception, supported by extracted effect
measures (rates, proportions, and diagnostic performance
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metrics) reported in the original studies. Where studies
reported multiple endpoints, priority was given to
clinically anchored outcomes (medication errors and
preventable adverse drug events) over intermediate alert
metrics, while still documenting alert performance to
contextualize feasibility and burden. Variation across
studies was handled qualitatively by explicitly describing
differences in populations, clinical workflow integration,
baseline safety infrastructure, and outcome measurement;
when discrepant findings occurred, plausible explanatory
factors (e.g., alert fatigue, data drift, implementation
maturity, or differing error definitions) were explored
without pooling estimates. Risk-of-bias ratings were used
to temper inferences within each subgroup, and
conclusions emphasized patterns supported by multiple
low-to-moderate risk evaluations.

Results

A PubMed search (inception-30 September 2025)
identified 4,277 records, of which 1,003 duplicates were
removed, leaving 3,274 unique records for title/abstract
screening . After exclusion of 3,150 records at screening,
124 full texts were assessed for eligibility and 113 were
excluded for non-hospital settings, non-Al/non-
deployable interventions, simulation-only evaluations,
or insufficient outcome reporting . Eleven studies met
inclusion criteria and were included in the narrative
synthesis, comprising inpatient ward, intensive care unit
(ICU), pediatric ICU (PICU), neonatal ICU (NICU), and
intravenous (IV) administration safety contexts. The
included studies were predominantly observational
cohorts, pre-post implementations, and retrospective
validations embedded in clinical workflows, with no
eligible randomized head-to-head trials comparing Al
versus non-Al medication safety systems.

Sample sizes and units of analysis varied substantially,
spanning 311 ICU albumin prescription requests in a
quasi-experimental pre-post design [17], 9,342 PICU
prescriptions across two implementation phases [16],
7,200 hospital admissions used for model development
and simulated deployment [18], 5,017 admissions to
inpatient wards with adjudicated adverse drug events
(ADEs) [19], and 3,481,634 medication alerts analyzed
for machine-learning-based filtering [14]. The evidence
base was geographically diverse, including inpatient
implementations and validations from Israel [12],
France [13,18], the United States [14], Taiwan [15], the
Netherlands (PICU) [16], Iran (ICU) [17], Japan (NICU)
[20], and the Republic of Korea (IV infusion monitoring)
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[21], alongside unsupervised outlier-detection work
applied to large-scale prescribing data [22]. Follow-up
periods were typically defined by hospital
implementation windows or retrospective extraction
intervals, ranging from several months pre-post [16,17].
to multi-year retrospective cohorts [14,18,19]. Across
studies, the most frequently reported clinically
anchored outcome was prevention or interception of
medication errors at the point of prescribing and/or
pharmacist verification (primary outcome for this
review), operationalized as (i) low-burden alerting with
clinically validated relevance and downstream order

modification, and/or (ii) reductions in measurable
prescribing deviations requiring correction. In an
inpatient internal medicine deployment of a

probabilistic machine-learning clinical decision support
system (CDSS), alerts were generated for 0.4% of all
medication orders.

With 85% judged clinically valid and 43% prompting
changes in subsequent medical orders, indicating
meaningful interception of high-risk prescribing
situations with low alert burden [12]. In a PICU pre-post
evaluation of a dosing decision-support system,
unintentional protocol deviations requiring adjustment
fell from 0.22% of prescriptions (11/5,034) before
implementation to 0.05% (2/4,308) after
implementation;  unjustified  deviations
declined from 0.56% to 0.23% [16]. In an ICU pre-post
study evaluating a medication decision support system
for albumin prescribing, guideline adherence increased
from 47.64% to 68.26% (P = 0.014), and 60.15% of
alerts resulted in prescription modification; a patient-
safety composite improved from 63.33% to 82.61% (P =
0.009), supporting measurable improvements in
prescribing quality aligned with medication safety
objectives [17].

similarly

In addition, a hospital admission prioritization tool for
medication reconciliation improved yield of identifying
patients with at least one unintended discrepancy, from
21% using the existing approach to 45% using the
machine-learning toolin a simulated real-life evaluation,
representing a reported 113% relative improvement in
targeting high-risk admissions for pharmacist review
[18]. A second commonly addressed outcome domain
was predictive performance for identifying high-risk
prescriptions or high-risk patients (often reported as
area under the receiver operating characteristic curve
[AUROC]. and/or precision-recall metrics). A hybrid
machine-learning ~ CDSS  designed to prioritize
prescription checks in hospitalized patients was totally
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developed and evaluated on 10,716 patients (16,270
prescriptions), achieving an AUROC of 0.81 and an
average precision of 0.75 for identifying prescriptions at
high risk of medication error [13]. The admission-based
medication error risk tool trained on 7,200 reconciled
admissions reported recall of 0.75, precision of 0.65, F1
score of 0.70, AUROC of 0.74, and area under the
precision-recall curve (AUPRC) of 0.75, consistent with
moderate discriminative ability in a clinically relevant,
pharmacist-facing prioritization use case [18]. For
inpatient wards, a prediction model for in-hospital ADE
risk at admission (5,017 admissions; 488 ADEs)
achieved AUROC 0.752 with favorable calibration
(calibration slope 0.997) and a Brier score of 0.056,
supporting feasibility of early risk stratification as part
of medication safety surveillance and targeted review
[19].

In NICU settings, a machine-learning medication error
detection system achieved high diagnostic performance
(AUROC 0.97; sensitivity 0.97; specificity 0.90; accuracy
0.91; F1 score 0.92), indicating strong discriminative
performance for error detection in high-complexity
neonatal prescribing and administration environments
[20]. A third outcome domain frequently quantified
across studies was alert burden, alert filtering potential,
and/or clinically meaningful alert acceptance, reflecting
the implementation tension between sensitivity for
harm prevention and usability constraints such as alert
fatigue. In a large-scale evaluation of medication alerts,
a gradient-boosting model (LightGBM) evaluated
3,481,634 alerts while maintaining sensitivity fixed at
0.99; precision reached 0.192 and the approach was
estimated to reduce alert volume by 54.1%, illustrating
potential to remove low-value alerts while preserving a
low false-negative rate threshold [14].

Complementary work modeling clinician response to
drug-related computerized alerts reported strong
discrimination for predicting physician response
(AUROC 0.916) with a positive predictive value of 0.871
and specificity of 0.833 across 3,885 alerts, supporting
feasibility of response-aware alert personalization as a
medication safety strategy (particularly = where
acceptance is necessary for error interception) [15].
Notably, the inpatient deployment with a very low alert
rate (0.4% of orders) simultaneously achieved high
clinical validity (85%) and substantial order-change
impact (43%), suggesting that prioritization and
targeted alerting could mitigate alert fatigue while
preserving safety impact [12]. Between-study
differences that plausibly explained divergent findings
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were primarily attributable to (i) heterogeneity in the
medication-use process targeted (prescribing/order
entry vs reconciliation vs administration monitoring),
(ii) differing definitions
“medication error” (protocol deviations, unintended
discrepancies, ADEs, alert-triggered potential errors),
and (iii) different operating points chosen for model
deployment (high sensitivity thresholds vs higher
precision/low-burden thresholds). For example, the
PICU study evaluated a low-incidence baseline
environment (protocol deviations <1%), where absolute
reductions were small but clinically meaningful,
whereas large-scale alert filtering work optimized
precision under a fixed sensitivity (0.99), prioritizing
safety at the cost of relatively low precision (0.192) in
exchange for major alert-volume reduction [14,16].

and denominators for

Hospital admission risk tools and ADE prediction
models relied on retrospective electronic health record
(EHR) features and were evaluated by predictive
metrics and yield-of-review rather than direct error-rate
reduction, which limited direct comparability to pre-
post prescribing error studies that quantified actionable
deviations and modifications [18,19]. Differences in
cliniclan workflow integration also likely contributed:
embedded at pharmacist verification or

medication reconciliation  emphasized
prioritization and yield, while prescribing-time alerting

systems
admission

and administration monitoring emphasized real-time
interception and mismatch detection [12,18,21].
Secondary outcomes were variably reported and
included workflow timing, system responsiveness to
changing patient status, and technology performance for
administration-phase safety. In the inpatient CDSS
deployment, 60% of alerts were triggered after
medication dispensing due to changes in patient status.

This is highlighting a clinically relevant monitoring
function beyond static order review [12]. In the ICU
albumin MDSS evaluation, alert responsiveness varied
by indication, implying context-dependent clinician
acceptance and the need for indication-specific tuning to
reduce inappropriate overrides [17]. For IV
administration safety, a multimodal infusion pump
monitoring approach using convolutional neural
network-based deep learning demonstrated high
technical performance: training/validation/test
accuracies of 98.3%, 97.7%, and 98.5%, respectively,
and infusion-rate estimation percentage errors of 0.22 -
2.90% in evaluation experiments, supporting feasibility
ofreal-time mismatch detection between pump settings
and actual infusion with exact states/prescriptions [21].
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Finally, unsupervised outlier detection applied to
medication orders demonstrated feasibility of
identifying potential prescribing errors at scale

(563,960 medication items), although the reporting
emphasized capability than
downstream clinical outcomes, limiting inference about
real-world error prevention impact [22]. Overall, the
synthesized evidence indicated that Al-enabled (or
algorithmically enhanced) medication safety systems
deployed in inpatient and perioperative-adjacent
hospital settings were consistently capable of
prioritizing high-risk prescriptions/patients, reducing
selected categories of prescribing deviations, and/or
lowering alert burden through filtering and response-
aware strategies [12-22].

detection rather

However, results were not directly comparable across
studies due to substantial heterogeneity in target
processes, definitions, denominators, deployment
thresholds, and outcome measurement. These findings
set up the Discussion by highlighting the trade-offs
between sensitivity, precision, alert burden, and clinical
integration, and by indicating where future evaluations
should prioritize standardized outcome definitions,
prospective impact assessment on preventable ADEs,
and implementation science alongside
predictive accuracy.

measures

Discussion

Across the 11 included studies, artificial intelligence -
safety systems
consistently associated with improvements in signal-to-
noise at the prescribing or verification interface and
with more efficient targeting of clinician attention to
higher-risk situations, rather than with direct
demonstrations of reduced preventable harm at the
patient level. In the inpatient outlier-detection clinical
decision support system (CDSS) evaluation, the alert
burden remained very low (315 alerts across 78,017
medication orders; 0.4% of prescriptions), while the
majority of alerts were clinically valid (85%) and
frequently actionable, with 43% prompting medication
discontinuation or modification within a median of 1
hour (interquartile range 0.07-4 hours) [12]. This
pattern aligned with earlier evidence indicating that
computerized provider order entry (CPOE) and
conventional decision support interventions often
reduced medication error rates but were frequently
underpowered to detect reductions in adverse drug
events in controlled evaluations [23,25]. The included

enabled medication were most
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prescription-check prioritization tool  similarly
emphasized discriminative capacity (area under the
receiver operating characteristic curve 0.81; area under
the precision-recall curve 0.75) rather than patient
harm endpoints, illustrating the broader trend in which
machine learning (ML) was positioned as a “screening
amplifier” embedded within pharmacist workflows
rather than a standalone preventive intervention [13].
The unsupervised outlier approach tested on 563,000+
prescribed medications reflected the same logic,
leveraging distributional abnormality to detect potential
dose and frequency anomalies when labeled “ground
truth” was scarce [22].

When interpreted alongside historical implementation
research, the included studies collectively suggested
that effective medication safety informatics, whether
classical CDSS or ML-enhanced, was most likely to have
been successful when it was delivered as partof clinician
workflow and produced
recommendations at the time and place of decision-
making, characteristics previously associated with
improved practice effects in randomized and controlled
studies of decision support [24]. Evidence in pediatric
and neonatal intensive care settings further
contextualized how ML-oriented tools were evaluated
against a backdrop of high baseline medication
complexity and relatively low tolerance for alert
overload.

action-oriented

In the pediatric intensive care unit (PICU) dosing CDSS
evaluation, the incidence of protocol deviations
requiring adjustment fell from 11/5,034 (0.22%) pre-
implementation to 2/4,308 (0.05%) post-
implementation, corresponding to a post-versus-pre
relative risk (RR) of 0.21 (95% confidence interval [CI].
0.05-0.96) for deviations requiring adjustment;
unjustified deviations similarly fell from 28/5,034
(0.56%) to 10/4,308 (0.23%), RR 0.42 (95% CI0.20-
0.86) [16]. Although absolute event rates were small,
these changes were consistent with the notion that
pediatric intensive care medication error prevention
frequently relied on narrowly specified dose-range
checking integrated into routine ordering, rather than
on broad-spectrum alerting. This observation was
compatible with broader pediatric and neonatal
intensive care evidence indicating that medication
errors occurred frequently in these environments (e.g.,
median pediatric intensive care unit medication error
rates reported as 14.6 per 100 medication orders, with
neonatal intensive care unit rates ranging up to 77.9 per
100 medication orders in published quantitative good
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studies), underscoring the importance of interventions
that reduced risk while maintaining usability [30]. In
the neonatal intensive care unit (NICU) ML model study,
the algorithmic output addressed error prediction at a
population level rather than offering narrow dose
checks; the model achieved an area under the curve
(AUC) of 0.920 (95% CI 0.876-0.970) for predicting the
presence of medication
physician- and nurse-related medication errors were
common (42.2% and 57.0% of patients, respectively) in
the analyzed cohort[20]. Together, the pediatric critical
care findings suggested that the most credible pathway
for ML in these settings was likely to have been precision
screening and prioritization rather than expansive alert
generation, consistent with clinically observed
constraints around alarm load and the need for high
value-per-alert.

errors and identified that

studies  reinforced
that resource allocation was a central mechanism by
which  Al-assisted systems may have improved
medication safety outcomes. The hospital admission
medication reconciliation prioritization tool improved
the yield of identifying patients with at least one
unintended discrepancy from 23/110 (21%) under the
conventional approach to 49/110 (45%) under the ML
tool, RR 2.13 (95% CI 1.40-3.24) for discrepancy
identification under fixed review capacity [18]. This
approach complemented established medication
reconciliation evidence, where pharmacist-led
programs were associated with reductions in post-
discharge healthcare utilization; in a systematic review
and meta-analysis of pharmacist-led medication
reconciliation at hospital transitions, pooled estimates
showed reductions in adverse drug event-related
hospital  revisits (RR 0.33, 95% CI 0.20-0.53),
emergency department visits (RR 0.72, 95% CI 0.57-
0.92), and readmissions (RR 0.81, 95% CI 0.70-0.95)
[31].

The admission-focused ML

Interpreted together, these findings suggested that ML-
based prioritization could have functioned as an
upstream “triage layer” that increased the efficiency of
pharmacist-led reconciliation programs, potentially
allowing the same staffing to cover more high-risk
admissions or to increase the intensity of review among
those most likely to harbor clinically relevant
discrepancies. A parallel admission-time model aimed at
predicting inpatient adverse drug events also illustrated
the practical challenge of low event prevalence for
operational deployment: despite acceptable the
discrimination (gradient boosting machine AUC 0.747,
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95% CI 0.735-0.759; AUC-precision-recall 0.134, 95%
C10.131-0.137), low positive predictive performance
remained likely when adverse drug event incidence was
low, implying that the principal benefit could have been
in reliably identifying low-risk patients for whom
intensive review may not have been needed [19]. Thus,
the included admission-time studies collectively implied
that the principal comparative advantage of ML may
have been targeting rather than replacing clinical
judgment, and that evaluation frameworks emphasizing
precision-recall were better aligned with clinical
operations than receiver-operating curve metrics alone.
Alert fatigue and clinician response behavior emerged as
a critical interpretive lens for the included studies that
focused on CDSS alert filtering and physician response
prediction.

The large alert-log study demonstrated that, with
sensitivity fixed at 0.99, a gradient boosting approach
achieved precision 0.192 and could have reduced alert
volume by 54.1%, suggesting that substantial
reductions in alert exposure could have been achieved
without materially increasing false negatives beyond a
pre-specified threshold [14]. Complementarily,
physician response prediction models trained on
disease medication-related CDSS alerts achieved strong
discrimination (artificial neural network AUROC 0.94,
accuracy 0.85, sensitivity 0.87, specificity 0.83) [15].
These findings were interpretable against a
longstanding body of literature documenting high
override rates for drug safety alerts in CPOE systems
(overrides reported in the range of 49% to 96% across
included studies in a major review), indicating that high-
volume, low-specificity alerting could have produced
error-prone conditions rather than safety gains [28].
The included ML filtering findings therefore suggested
that Al would have been most beneficial when it reduced
exposure to low-value alerts while preserving detection
of high-risk events with high sensitivity.

However, the same mechanism also implied a risk: if
model drift, documentation changes, or policy changes
shifted alert over time, ML-based
suppression strategies could have inadvertently
concealed clinically important warnings, reinforcing the

characteristics

importance of local monitoring and ongoing model
governance as part of routine CDSS maintenance. The
included interventional and monitoring studies in
administration-stage medication safety suggested that
Al systems may have contributed most directly when
matched to well-defined, high-risk failure modes. The
infusion monitoring system used a multimodal sensing
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and deep learning to detect mismatches between
infusion pump settings, the actual infusion state, and
prescribing instructions in real time; it achieved
training/validation/test accuracies of 98.3%, 97.7%,
and 98.5% and infusion-rate estimation errors in the
range 0f0.22-2.90%, indicating strong technical
performance under evaluation conditions [21]. This
result was consonant with prior evidence on smart
infusion pumps, where systematic review findings
indicated that smart pumps intercepted wrong-rate,
wrong-dose, and pump-setting errors but were limited
by compliance issues and high override rates for “soft
limits,” suggesting that technical capability alone was

insufficient without high-fidelity clinical integration
[27].
In contrast to infusion-stage systems, barcode-

supported administration technologies provided a well -
established benchmark for measurable reductions in
administration errors. In a before-and-after clinical trial
of barcode-enabled electronic medication
administration records (eMAR), nontiming
administration errors fell from 11.5% to 6.8% (relative
reduction 41.4%, P<0.001), and potential adverse drug

events (excluding timing-related) fell
from 3.1% to 1.6% (relative reduction 50.8%, P<0.001),
while transcription errors  were eliminated

(from 6.1% to 0%) [26]. When these comparisons were
made, the included Al infusion monitoring evaluation
appeared promising but comparatively early in
translational maturity, because it emphasized device-
level accuracy metrics rather than demonstrable
reductions in medication errors or adverse events in
routine care pathways.

The systematic review title addressed perioperative and
inpatient medication errors, yet the included evidence
base remained weighted toward inpatient prescribing,
alert optimization, pediatric dosing support, and
admission-time reconciliation or harm prediction, with
limited direct evaluation in perioperative medication
preparation and administration workflows. This
imbalance was important because the perioperative
medication-use process carried distinct risks and time
pressures; in  prospective  observational work,
medication errors and/or adverse drug events were
observed in 5.3% of  perioperative medication
administrations (95% CI 4.5-6.0), with 79.3% deemed
preventable and a substantial proportion classified as
serious, indicating a high-risk environment where rapid,
ergonomic safety defenses would have been needed
[29]. The included the ICU medication decision support
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intervention demonstrated how targeted systems could
have improved guideline adherence and altered
prescribing behavior in a high-acuity context (guideline
adherence increased from 47.64% to 68.26%,
and 60.15% of alerts led to prescription modification)
[17], but the generalizability of these effects to
anesthesia medication preparation and administration
remained uncertain. The cross-cutting methodological
signal across the included studies was that model
performance was strongly shaped by outcome definition
and by event prevalence. For example, admission-time
adverse drug event prediction achieved AUCs
near 0.75 but exhibited low AUC-precision-recall
values (approximately 0.13-0.14) despite statistically
significant improvements over logistic regression.

This is demonstrating that “good discrimination” could
coexist with limited operational value if the downstream
workflow required high positive predictive value to
justify  interruption  or review  [19].
Consequently, the included evidence suggested that the
most plausible near-term safety impact of Al systems
may have been achieved when algorithms were used to
(i) prevent egregious dosing and protocol deviations in
pediatrics [16], (ii) provide low-burden, high-validity
outlier alerts that triggered order modification [12], and
(i) improve the yield of pharmacist
reconciliation resources through risk-based selection
[18], rather than when they attempted to
comprehensively replace conventional medication
safety infrastructure. This systematic review had several
limitations that may have influenced the completeness
and interpretability of the synthesized evidence.

manual

scarce

The search strategy primarily relied on PubMed and
English-language publication constraints, which may
have excluded relevant evaluations indexed exclusively
in other biomedical or engineering databases or
published in non-English journals. The heterogeneity of
study designs, target settings (inpatient wards, pediatric
intensive care units, neonatal intensive care units, and
intensive care units), and outcome definitions (protocol
deviations, unintended discrepancies, alert filtering
performance, guideline adherence, adverse drug event
prediction, and device-monitoring accuracy) precluded
meaningful quantitative pooling and increased the risk
that narrative synthesis overstated coherence across
fundamentally different interventions. Additionally,
most included evaluations were single-center orsystem-
specific, which may have limited external validity and
amplified the influence of local workflows, prescribing
culture, and the baseline safety infrastructure. Finally,
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because the review did notinclude protocol registration,
there was an increased risk that methodological
decisions (e.g., subgroup emphasis) were influenced by
the available evidence base rather than strictly
prespecified analytic intent. Despite these limitations,
the review had several strengths. The included evidence
was restricted to clinical trial or cohort-type evaluations
embedded in real hospital care, thereby prioritizing
translational relevance over purely simulated modeling
studies and enabling interpretation in terms of real
implementation constraints (alert burden, workflow
integration, and actionable decision-making).

The synthesis incorporated multiple medication-use
stages (prescribing/order verification, admission
medication reconciliation, administration monitoring)
and emphasized both clinically anchored outcomes
(order modification, discrepancy yield, protocol
deviation reduction) and implementation-relevant
metrics (precision under fixed sensitivity, area under
the precision-recall curve), which strengthened
interpretability for safety engineering and hospital
governance. Moreover, the external comparisons
contextualized the AI findings within the broader

evolution of medication safety interventions,
CPOE/CDSS, Dbarcode eMAR, and smart pump
infrastructures,  highlighting  where Al-enhanced

systems appeared to extend existing approaches versus
where they remained earlier-stage proofs of capability.

Overall, the evidence synthesized in this review
indicated that Al-enabled medication safety systems
were most consistently associated with improvements
in targeted detection and prioritization, low-burden
outlier alerting with high clinical validity and frequent
order modification [12],improved prioritization of high -
risk prescriptions [13,22], reduced pediatric protocol
deviations [16], enhanced yield of medication
reconciliation activities (RR 2.13, 95% CI 1.40-3.24)
[18], and improved discrimination for adverse drug
event prediction with explicit limitations under low
event prevalence (AUC 0.747, 95% CI 0.735-0.759;
AUC-precision-recall 0.134, 95% CI 0.131-0.137) [19].
The clearest comparative lesson from external literature
was that technology-mediated medication safety gains
historically occurred when systems were integrated into
workflow and produced measurable reductions in high -
frequency errors (e.g, barcode eMAR relative
reductions of 41.4% in nontiming administration errors
and 50.8% in potential adverse drug events) [26], while
persistent challenges such as alert overriding (49-96%)
limited the impact of poorly tuned the drug safety alerts
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[28]. For Saudi Arabia, the national medication error
reporting demonstrated that reported
medication errors were concentrated in the prescribing
stage (84.8%), that only 5.8% reached patients, and that
work overload and lack of experience were commonly
associated contributing factors (31.6% and 22.7%,
respectively) [32]. In perioperative practice, a Saudi
survey indicated that 69% of anesthesia clinicians had
experienced anesthetic drug errors at least once, with
haste and workload prominent contributors (each
60.3%) and fear of medicolegal consequences acting as
a major barrier to reporting (77.7%) [33]. These
patterns suggested that Saudi implementation priorities
could have emphasized Al-supported optimization of
prescribing surveillance and reconciliation targeting in

evidence

parallel with perioperative human-factors interventions
(standardized syringe labeling, double-check systems,
and technology-assisted verification), with explicit
nonpunitive  safety culture and
measurement strategies that linked Al deployment to
reductions in clinically meaningful errors and
preventable harm.

attention to

Conclusions

The available hospital-based evidence indicated that
artificial  intelligence-enabled  medication  safety
systems generally supported prevention of medication
errors in perioperative-adjacent and inpatient care by
improving identification and prioritization of high-risk
prescriptions or patients, strengthening prescribing
quality and guideline adherence in implementation
evaluations, and reducing the operational burden of
medication safety surveillance through more selective,
response-aware alerting. The most consistent benefits
were observed when these tools were tightly integrated
into routine clinical workflows, such as order entry,
pharmacist verification, medication reconciliation, or
real-time administration monitoring, and configured to
deliver low-burden outputs with high clinical relevance.
At the same time, direct comparison of effect sizes across
studies was constrained by heterogeneity in settings,
definitions of medication error, outcome denominators,
and evaluation designs, and relatively few reports
assessed preventable adverse drug events or sustained
patient-level outcomes over longer follow-up.
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Table 1. Characteristics and key findings of the studies included in the review on Artificial Intelligence in
Medication Safety Systems for the Prevention of Perioperative and Inpatient Medication Errors

Study . . Intervention / Disease / .
Reference Study Design Population Exposure Condition Main Outcomes
1lict1 1 0, . 0,
[12]. Segalet Implementation  Adult inpatients Probablllstlc ML Inpgtlept .A.lerts 0.4 A) .of oorders, 85%
al.. 2019 cohort (hospital wards) outlier-detection medication clinically valid; 43% led to order
" p CDSS safety change; median response 1 h.
[13]. Corny Developmentval _ 110SPitalized ML-CDSS to Medication ;36 0.81; AUPRC 0.75 for
A adults (multiple prioritize high- error risk . . L .
et al., 2020 idation cohort . ; LS o high-risk prescription detection.
units) risk prescriptions  (prescribing)
[14]. Liu et Retrospective Hospltal ML. ﬁlt.ermg of Alert fatigue / At SeI'ISIthlty 0.99: precision 0.192;
al. 2022 cohort medication alert medication alerts safety alerts estimated 54.1% alert-volume
" logs (GBM) reduction.
Clinician- ANN model Alert fatigue / AUROC 0.94; accuracy 0.85;
[1:1]' l;(‘;lzyoet Difi\;iilgﬁ T:}?g:tal handled CDSS predicting alert decision sensitivity 0.87; specificity 0.83 for
" alerts acceptance support response prediction.
. Dose deviations needing adjustment
- [;6". ¢ Pre-postconory  Pediatric ICU b otsmg tc(]f S8 P lc.g. RR 0.21 (95% CI 0.05-0.96);
:ls ;:)nzlze re-postcoho (PICU) patients mrf:f(r:frliginm preesrcrglrslng unjustified deviations RR 0.42
” P g (95% CI 0.20-0.86).
. L ICU Guideline adherence
[17]. Dashti Icu patients Me_rdlcatlon prescribing 47.6%—68.3%; 60.2% alerts
Pre—post cohort prescribed decision support . . ) .
et al., 2025 albumin system (MDSS) quality modified orders; safety composite
Y (albumin) 63.3%—82.6%.
[18]. Abdo et Development + Hospital ML tool to Medication AUROC 0.74; discrepancy yield
l. 2024 simulation admissions at prioritize high- errors / 45% vs 21% (RR 2.13, 95% CI
al, cohort intake risk admissions reconciliation 1.40-3.24) in evaluation subset.
[19]. ML predicti f AUROC 0.752; Brier 0.056;
Langenberg Development/val Adult ward Vil preciction o Adverse drug LI V- 1025 BIIeT §.900;
t al :dation cohort admissions 1n—h0spltal ADE events calibration slope 0.997 at
erze(elz 3 ” risk admission.
[20]. Yalein  Development/val ~ Neonatal ICU ML-l?ased N¥CU. AURQC 0.97; sensitivity 0.97;
A . medication error medication specificity 0.90; accuracy 0.91; F1
et al., 2023 idation cohort  (NICU) patients .
detection errors 0.92.
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. . . Multimodal deep- v Accuracy 98.5%; infusion-rate error

[21]. Hwang Technical 1V infusion . .. . . .

S . . learning pump administration 0.22-2.90% in evaluation
et al, 2021 validation study  administrations 2 .
monitoring safety experiments.

[22]. Dos Retrospective Large Unsupervised Prescribing Identified outlier prescriptions for
Santos et al., data-mining prescribing outlier detection anomaly review at scale; downstream clinical

2019 study dataset (DDC-Outlier) detection impact not quantified.

Abbreviations: Al artificial intelligence; ANN, artificial neural network; AUPRC, area under precision—recall curve;
AUROC, area underreceiver operating characteristic curve; CDSS, clinical decision support system; CI, confidence interval;
GBM, gradient boosting machine; ICU, intensive care unit; IV, intravenous; ML, machine learning; MDSS, medication
decision support system; NICU, neonatal intensive care unit; PICU, pediatric intensive care unit; RR, relative risk.
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